
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

AI-ASSISTED AUTHORING FOR TRANSPARENT,
DATA-DRIVEN DOCUMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce transparent documents, interactive web-based scholarly articles
which allow readers to explore the relationship to the underlying data by hovering
over fragments of text, and present an LLM-based tool for authoring transpar-
ent documents, building on recent developments in data provenance for general-
purpose programming languages. As a target platform, our implementation uses
Fluid, an open source programming language with a provenance-tracking runtime.
Our agent-based tool supports a human author during the creation of transparent
documents, identifying fragments of text which can be computed from data, such
as numerical values selected from records or computed by aggregations like sum
and mean, comparatives and superlatives like “better than” and “largest”, trend-
adjectives like “growing”, and similar quantitative or semi-quantitative phrases,
and then attempts to synthesise a suitable Fluid query over the data which gener-
ates the target string. The resulting expression is inserted into the article’s web
page, turning the static text fragment into an interactable data-driven element
able to reveal the data that underwrites the natural language claim. We evaluate
our approach on a subset of SciGen, an open source dataset consisting of tables
from scientific articles and their corresponding descriptions, which we extend with
hand-generated counterfactual test cases to evaluate how well machine-generated
expressions generalise. Our results show that gpt4o is often able to synthesise
compound expressions extensionally compatible with our gold solutions.

1 INTRODUCTION: TRANSPARENT, DATA-DRIVEN DOCUMENTS

When interpreting or verifying data-driven claims, a key challenge lies in tracing specific claims
back to the relevant data. In peer review, for example, empirical claims typically lack author-
supplied links to data, making them hard for reviewers to check directly (Weber & Karcher, 2020).
Paper retractions, meanwhile, are often attributable not to fraud, but to simple errors in data manage-
ment or analysis (Hu et al., 2025). The use of large language models (LLMs) to interpret scholarly
documents has seen considerable attention recently, from fact-checking (Abu Ahmad et al., 2025) to
interpretation of charts and figures (Roberts et al., 2024), but current LLM interfaces do not support
direct interrogation of visual or other outputs for traceability to inputs.

Recent advances in data provenance and data visualisation (Psallidas & Wu, 2018; Bond et al.,
2025), on the other hand, have pushed in this direction using a more infrastructural approach. These
approaches link computed outputs to their data sources directly by tracking dependency information.
This allows visual outputs to support provenance queries, user interactions (e.g. mousing over
visual elements) that reveal how output features relate to data. The advantage of this approach is
that the relationships to data sources are exposed automatically via trusted infrastructure, typically
a query language or general-purpose programming language which tracks how data flows through
a computation. However, these approaches are limited to outputs computed from data, such as
visualisations. What is missing is a way to extend these “direct interrogation” features to natural
language itself, where the main claims of most scholarly articles are actually made.

In this paper, we address this gap by combining two complementary approaches: the ability of LLMs
to understand technical language and synthesise queries over data, plus the provenance-tracking
infrastructure of an open source programming language called Fluid (https://f.luid.org/) (Perera

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Two versions of a transparent document, showing text fragments linked to data

et al., 2022; Bond et al., 2025). Together, these two technologies enable the creation of transparent
documents, web-based scholarly articles with two key transparency features:

1. Data-driven: Quantitative statements expressed in natural language — e.g. that system X is
faster than system Y on some task — are computed from the relevant data, rather than occurring
merely as static fragments of text.

2. Data linking: Readers and reviewers can interactively trace such claims back to the specific
data elements that support them, through embedded provenance queries.

Figure 1, generated from our implementation, illustrates these two features. The upper section
shows a “transparent” excerpt from Zhang et al. (2018), a scholarly article comparing text encoding
techniques. When a reader hovers over the phrase “does not further improve”, the relevant data are
highlighted on the left. Other fragments (e.g. “better than”, “further improvements”) that refer to
the same data are also marked, allowing the reader to explore supporting and contrasting evidence.
The lower section shows a counterfactual situation where the authors’ experiments had produced
different results: here the phrase “does not further improve” is replaced by “further improves”.

This transparent version of the document was implemented in Fluid. The source code is shown in
Figure 2, and makes use of several helper functions, a representative subset of which are shown in
Figure 5. What makes our solution interesting is that the provenance-tracking runtime of Fluid and
the LLM-based authoring support are both essential components of the solution, with Fluid pro-
viding the interactions, and the LLM-based tool making the authoring process feasible. Generating
code for a traditional language like Python would still result in a data-driven document, but crucially
without the interactive provenance queries; and without AI-based tooling to support the authoring
process, the author would be faced with creating the code in Figure 2 by hand, which is unlikely to
be feasible as part of the usual scientific writing process.

AI-assisted authoring of transparent documents thus support turning static text into interactable,
data-driven content able to expose the evidential basis of scholarly claims. We envisage two use
cases. First, when authoring content for an online article, a journalist or scientific publisher may
wish to provide text which is linked to the underlying data so that the evidence base for the textual
claims can be explored directly from the article. Second, when reading a document reporting on
findings derived from open data (perhaps a scientific paper or climate report), the reader may want
to retroactively interpret parts of the text as queries over the available data and gradually “rationally
reconstruct” the relationship between claims in the paper and the evidence base. This might be just
to aid their own comprehension, or part of a formal peer review process.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 2: Gold solution for transparent document in Figure 1 (some lines omitted)

Contributions. Our specific contributions are as follows. We leave implementing a full Copilot-
like authoring plugin for an IDE such as VSCode or Cursor for future work (Section 6).

• A proof-of-concept LLM-based tool for iteratively transforming a preexisting opaque document
and associated data set into a transparent, data-driven counterpart (Section 2);

• A summary of the natural language idioms we have studied (Section 3) and an empirical evalu-
ation of how well state-of-the-art models are able to solve the associated interpretation and code
synthesis problems (Section 4).

2 AI-ASSISTED AUTHORING WORKFLOW

Our authoring tool is composed of two LLM-based agents. A SuggestionAgent identifies text frag-
ments potentially computable from data, and an InterpretationAgent, given a text fragment pro-
vided by the SuggestionAgent or by the author, attempts to synthesise a Fluid expression which
computes the target fragment. The main components of the workflow are as follows:

1. Initial configuration. The author imports the target text and accompanying data into the system
to create a programmatic representation of the target document. Initially this is simply equivalent
to the target text, taking the form of a string literal ”””...”””, where the triple quotes are Fluid
syntax for a Python or JavaScript-style interpolated string, i.e. a literal where expressions of
the form {e} are permitted within the string. The SuggestionAgent analyses the target text and
identifies any fragments which are candidates for being computed instead of remaining as literal
substrings.

2. High-level Authoring workflow. The system then enters the human-in-the loop authoring work-
flow shown in Figure 3, where the author interacts with the InterpretationAgent. The system
waits for the author to select a fragment of text s to interpret (perhaps previously highlighted
by the SuggestionAgent). The system then attempts to generate a candidate Fluid expression e
using the closed-loop synthesis step (3) below. If code synthesis succeeds with an expression
e, the system proceeds to the manual validation step (4) below. If the synthesis step fails with
no expression, no remedial action is possible; this is considered an unsuccessful path through
the workflow and returns the system to the entry state. Otherwise the synthesis step produces an
expression e which evaluates to a mismatched string s′ ̸= s outcome, and the user can choose to
manually abort and return to the entry state, or optionally to revise the goal, replacing s with s′

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Closed loop code synthesis

approve

reject

Splice code

system replaces text
fragment by ${e}

Check interactions

reload web page and
check behaviour

Update text

system replaces text
fragment by s′

Resolve mismatch
evaluate s′ as alternative
to s

Select text
choose text fragment s
to interpret

approve

reject

Generate code
prompt LLM to produce
expression e evaluating
to s

Validate code
check e is well formed
by evaluating with CLI

runtime error
(retry permitted)

Augment prompt
extend prompt with
error information

Compare to target

does s′ match target s?

value coercible to string s′

match

mismatch
(no retry)

mismatch (retry permitted)

runtime error
(max retry exceeded)

Figure 3: Human-in-the-Loop workflow (states requiring human intervention in grey)

in the target document and retaining e as the candidate expression. This is intended to cover the
situation where the author has made a claim which is incorrect, and the data set and surrounding
natural language have led the LLM to synthesise an expression which generates a different value
from the one specified by the user.

3. Code synthesis step. The expression synthesis step is an error-guided iterative prompting
loop (Skreta et al., 2023), beginning with an initial prompt sent to the LLM (see Prompt design
below) requesting the generation of an expression e. Using the Fluid command-line interface,
the expression is validated to check that it evaluates without error, produces a value coercible
to a string s′, and finally that s′ is equal to the target fragment s. Any failure triggers prompt
augmentation with the appropriate error message and the system retries generation. If code syn-
thesis loop is able to yield an expression which computes s within a maximum number of retries,
the synthesis step succeeds with e. If the last generated e was invalid (resulting in an error), the
code synthesis step fails with no expression. Otherwise, code synthesis produces an expression
e but with a mismatched string outcome s′ ̸= s.

4. Manual validation step. Once a candidate expression has been generated, the system replaces
the selected substring s with the interpolation expression {e}, creating a new (but only tentative)
document configuration. The author can republish the web page hosting the document and inter-
act with the proposed revision. As shown in Section 4, this is an important validation step that
can reveal errors in the generated expression. If the interactions look reasonable, the author can
approve the new document state; this is the primary successful path through the workflow and
returns the system to the entry state where it is waiting for another top-level interaction from the
author. Otherwise, the author rejects the proposed change and returns to the entry state without
any change to the document.

This human-in-the-loop design combines automated synthesis with validation and author oversight,
providing a substantial level of automation, but requiring the author to intervene at key steps to
ensure correctness.

InterpretationAgent prompt design. The InterpretationAgent is guided by a structured system
prompt that frames code generation as a precise replacement task. The model receives the imported
datasets, helper modules, and the current Fluid representation of the paragraph, in which a text
fragment is marked with the tag [REPLACE . . .]. The task is to substitute this placeholder with a
Fluid expression that evaluates exactly to the target string, reconstructing quantitative or comparative

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Author selects text
fragment to replace

"""As shown in Table 3, BiLSTM gives
significantly better accuracies
compared to uni-directional LSTM [...] """

Editing Loop

"""As shown in Table 3, BiLSTM gives
significantly ${trendWord (model
"BiLSTM" tableData).acc (model
"LSTM" tableData).acc betterWorse}
accuracies compared to uni-directional
LSTM [...]"""

"""As shown in Table 3, BiLSTM gives
significantly ${trendWord (model
"BiLSTM" tableData).acc (model
"LSTM" tableData).acc betterWorse}
accuracies compared to uni-directional
LSTM [...] """

Online Article

Interpretation Agent
proposes change

Author accepts change

Author interacts with
updated article

As shown in Table 3,
BiLSTM gives significantly
better accuracies
compared to uni-
directional LSTM, with the
training time per epoch
growing from 99.0
seconds to 106 seconds.

(a) Author accepts expression

Author selects text
fragment to replace

"""As shown in Table 3, BiLSTM gives
significantly better accuracies
compared to uni-directional LSTM [...] """

Editing Loop

"""As shown in Table 3, BiLSTM gives
significantly ${trendWord (model
"BiLSTM" tableData).time_s (model
"LSTM" tableData).time_s betterWorse}
accuracies compared to uni-directional
LSTM [...] """

As shown in Table 3,
BiLSTM gives significantly
better accuracies
compared to uni-
directional LSTM, with the
training time per epoch
growing from 99.0
seconds to 106 seconds.

Online Article
Interpretation Agent
proposes change

Author aborts change

Author interacts with
updated article

(b) Author identifies error and rejects

Figure 4: Two possible paths through editing loop, with interactive verification of generated code

claims as data queries. To ensure integration with the workflow, the output must consist solely of
a syntactically valid Fluid expression, with no additional commentary. The full prompt is given
in Appendix A.

3 TARGET IDIOMS OF NATURAL LANGUAGE

Label Example Gold Solution for Example
Data
retrieval

the training time per epoch growing
from 67 seconds to 106 seconds.

(model_ "LSTM").time_s

Ratio The Energy Sector accounts for total
methane emissions of 52.80% in 2030.

(getByCategory "Energy Sector" year).emissions /

sum (map (fun x -> x.emissions)

(getByYear year)) * 100

Average The average methane emissions for the
year 2030 is 13.51

sum (map (fun x -> x.emissions)

(getByYear year)) / length records

Min/Max The Energy Sector recorded its highest
methane emissions in 2030

let maxEntry = maximumBy (fun x -> x.emissions)

(filter (fun x -> x.type == "Energy Sector")

tableData)

in maxEntry.year

Rank 3-layer stacked CNN gives an accuracy
of 81.46%, which is the lowest
compared with BiLSTM, and S-LSTM

rankLabel "lowest"

(findIndex "model" "CNN"

(sort cmpTime tableData))

Sum The total methane emissions for the
year 2030 is 37.74 for Agriculture

sum (map (fun x -> x.emissions)

(getByYear year))

Comparison The training time per epoch growing
from 67 seconds to 106 seconds.

trendWord

(model_ "BiLSTM" tableData).time_s

(model_ "LSTM" tableData).time_s

growShrink

Generalised
quantifiers

In the case of one syndrome
(Hemorrhagic) we noticed an
unusually low level of recall for SVM
but not for NB.

unusuallyHighLow (overallComparison [

compareCols col "naive_bayes_r"

(findWithKey_ "synd" "Hem." tableData)

| col <- ["svm1_r", "svm2_r", "svm3_r", "svmr_r"]

])

Table 1: Quantitative/semi-quantitative natural language forms considered in this paper

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

1 let ordinalMap =

2 [{ lastDigit: 1, suffix: "st" },

3 { lastDigit: 2, suffix: "nd" },

4 { lastDigit: 3, suffix: "rd" }];

5

6 let ordinal n =

7 if n <= 0 then error "n <= 0 not supported"

8 else if (n < 4) then

9 numToStr n ++

10 (findWithKey_ "lastDigit" n ordinalMap).suffix

11 else if (n >= 4) ‘and‘ (n <= 20) then

12 numToStr n ++ "th"

13 else error "n > 20 not supported";

14

15 let rankLabel word n =

16 (if n == 1 then "" else ordinal n ++ "-") ++ word;

19 let trendWord n1 n2 compareWord =

20 compareWord (compare n1 n2);

21

22 let growShrink EQ = "unchanging";

23 growShrink LT = "shrinking";

24 growShrink GT = "growing";

25

26 let smallerHigher EQ = "equal";

27 smallerHigher LT = "smaller";

28 smallerHigher GT = "larger";

29

30 let improvements EQ = "no further improvements";

31 improvements LT = "no further improvements";

32 improvements GT = "further improvements";

Figure 5: SciGen helper functions (representative examples)

Table 1 summarises the natural language idioms studied in this paper. With state-of-the-art models
like gpt-4o and gpt-5, our system is able to resolve basic table lookups of direct numerical values,
as well as computations of percentages, averages, minima and maxima, and totals, each mapped
to the corresponding aggregation over the source data. For example, phrases such as “the Energy
Sector accounts for 52.80% of total emissions” and “average methane emissions for 2030 is 13.51”
are interpreted in terms of sum and mean respectively over the relevant data values. Similarly,
“recorded its highest emissions in 2030” is interpreted as a maximumBy query, while a statement
such as “CNN gives the lowest accuracy” is mapped to an explicit computation of rank.

We also consider trend expressions, which comparative natural language phrases describing how
a data attribute evolves over time, such as “training time growing from 67 to 106 seconds”. Such
idioms are mapped to higher-order functions like trendWord parameterised on additional helper
functions such as growShrink and betterWorse (shown in Figure 5) which map comparisons to
appropriate natural language phrases.

Taken together, these categories cover a representative portion of the numerical reasoning idioms
found in the SciGen benchmark. However, some linguistic forms that commonly arise in scholarly
articles are not covered in our analysis. We have yet to study approximate quantitative terms like
“around 50%” or “roughly 100 instances”, nor interval-based descriptions such as “between 30 and
40%” or “within 5–10 seconds”. While we have no reason for thinking these will present specific
difficulties, other forms are likely to be more challenging. So-called graded modal adverbs (Lassiter,
2017) which modify adjectival comparatives like “better” – as in “slightly better” and “significantly
higher” – especially when combined with trends over time, as in “steadily increasing” or “sharply
declining” – are likely to prove difficult because the interpretation of these qualifiers can be sub-
jective and context-dependent. Generalised quantifiers like “generally” and “usually” (Barwise &
Cooper, 1981) present similar challenges because colloquial use may differ from more formal uses
(in some situations “most” might mean a majority, i.e. greater than 50% of cases, but in others may
mean only “greater than any other alternative proportion”). On the other hand these difficulties also
present themselves to human readers, so extending coverage to these idioms would substantially
deepen our tool’s ability to bridge natural language reporting with interpretation in terms of the un-
derlying dataset, perhaps revealing inconsistent use of technical language on the part of the author.
We discuss this further in Section 6.

4 EXPERIMENTAL EVALUATION

4.1 RESEARCH QUESTIONS

Our evaluation tests the ability of the InterpretationAgent to translate quantitative and semi-
quantitative expressions from scholarly natural language into executable queries that operate on
the underlying dataset. Beyond raw accuracy, we are also concerned with how performance varies

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

(a) Success rate by Linguistic Category (b) Success rate by Complexity

Figure 6: Success rate of the proposed system, measured over 5 runs with gpt-4o

with task complexity, and whether the generated expressions are robust under changes to data or
in the presence of ambiguity or other low data quality issues. These are captured in two research
questions:

RQ1. Interpretation Accuracy across Linguistic Idioms and Complexity. To what extent can
LLMs accurately interpret quantitative and semi-quantitative claims in scholarly text as data queries?
We examine performance across a range of linguistic idioms (e.g. averages, percentages, min/max,
ranks, as summarised in Table 1) and investigate how accuracy varies with task complexity, mea-
sured (somewhat crudely) by the number of query sub-expressions (e.g. retrieval, aggregation, or
arithmetic) present in the gold solution.

RQ2. Generalisability and Robustness. How well do the generated expressions generalise when
the underlying data changes, or when the input contains misleading or ill-specified information? We
test whether generated queries continue to produce correct outputs under a set of hand-generated
counterfactual modifications of the dataset, based on expected query results specific to each test
case, and also how counterfactual performance is impacted by the presence of misleading or adver-
sarial phrasing. Table 2 shows some of cases we deem problematic in this sense; in these cases,
producing a valid expression is likely to be challenging because of ambiguities in the input data or
accompanying natural language.

4.2 RESULTS

Interpretation Accuracy across Linguistic Idioms and Complexity. To evaluate RQ1, we used
a sample of the SciGen dataset (Moosavi et al., 2021), an open source dataset consisting of tables
from scientific articles and their corresponding descriptions. We aggregated the results according to
the linguistic categories from Table 1. Figure 6a illustrates the success rate for each category, both
with and without target-value sharing.

The results show that the system is robust when provided with sufficient guidance but degrades
when underspecified. With the target-value sharing, the InterpretationAgent produced correct Fluid
expressions in 74.9% (S.D. 3.0%) of cases, but performance dropped to 57.1% when the target
was withheld. This highlights the system’s reliance on explicit cues when resolving ambiguous
fragments.

Performance also varied across linguistic categories. Success rates exceeded 68% for compari-
son, 77.3% for data retrieval, and 97% for min/max search tasks. In contrast, accuracy decreased
significantly for expressions requiring differences (20%) and for ranking tasks (0%).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Problem Type Example Explanation
false comparison BiLSTM is the most efficient among all models

compared, with the highest model size
BiLSTM is not the most ef-
ficient, nor does it have the
largest size.

wrong numerical value LSTM is the fastest model with overall time
taken being 90 seconds

It is not 90 but 106.

ambiguous referent LSTM is the fastest model with overall time
taken being 90 seconds

There are two type of time in
the dataset (training time, exe-
cution time), both with a value
of 90 seconds.

Table 2: Categories of problematic example

The trend for compositional complexity is more nuanced as shown in Figure 6b, which reports the
success rate as a function of the number of categories assigned to each expression: success rates
are 62% for single-category expressions, increase to 91% when two categories are combined, but
collapse to 0% when three categories are involved. This suggests that moderate composition can
actually aid performance, perhaps by giving the model clearer structural cues, but that complexity
beyond a certain threshold overwhelms the synthesis process.

Generalisability and Robustness. As a preliminary attempt to address RQ2, we carried out coun-
terfactual testing to evaluate the robustness of generated expressions under changes to the underlying
data. In this setup, the input tables were modified according to hand-craft test specifications, and
both the expected and generated expressions were re-executed to check whether the behaviours re-
mained consistent. Across 300 test executions, 121 contained at least one counterfactual error (an
average of 3.8 per case), of which 42 ultimately still succeeded. These tests highlight cases where
an expression may coincidentally yield the correct output on the original data but fails to be exten-
sionally equivalent more generally (i.e. under perturbation). For example, in one test the system
generated

(findWithKey ”model” ”LSTM2” tableData).time s

intended to retrieve the execution time of the LSTM model, but incorrectly referred to LSTM2.
Counterfactual testing exposed this mismatch, which would otherwise have gone undetected.

At present, counterfactual tests are used only as an evaluation device, not as part of the author-
ing workflow itself. For future work (Section 6), we plan to investigate automatic generation of
counterfactual tests, allowing these additional robustness checks to be integrated into the document
authoring workflow.

5 RELATED WORK

Argument mining. Argument mining is an area of NLP which involves identifying argumentative
structures in text, such as claims, premises, and conclusions, and mapping them to formal representa-
tions (Palau & Moens, 2009; Lippi & Torroni, 2015). Early work focused on rule-based approaches,
while more recent work has leveraged machine learning and deep learning techniques (Stab &
Gurevych, 2014b; 2017; Eger et al., 2017). The field has also emphasized defining annotation
schemes for the task, such as the Argumentative Zoning framework (Teufel & Moens, 2002; Teufel
et al., 2009), as well as schemes more directly tailored to argument mining (Stab & Gurevych,
2014a). The field has focused on various domains, starting from legal texts (Toulmin, 2003), and
has relied on online resources such as Debatepedia (Cabrio & Villata, 2013). The community has
also rapidly engaged with work that explores the use of argument mining in scientific texts (Liakata
et al., 2012; Lauscher et al., 2018b) to better understand the structure of scientific arguments and the
relationships between different claims and evidence. While the advent of LLMs has improved per-
formance (Gorur et al., 2025; Vrakatseli et al., 2025), argument mining remains a challenging task,
particularly when it comes to identifying implicit argumentative relations between discourse units,
and reasoning about relationships among different argumentative components, especially in cross-
domain settings where models struggle to generalise (Gemechu et al., 2024). While in our work we

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

do not directly perform traditional argument mining, this work similarly relies on the identification
of claims in text, which we evaluate following established practices in the field.

NLP and scientific writing. The intersection of NLP and scientific writing has gained increasing
attention in the last decade, with a focus on improving the clarity, coherence, and overall quality
of scientific texts. On the authoring side, tools such as automated writing assistants can support
researchers in producing more fluent and accessible text, for instance through grammar correction,
summarisation and text simplification (Napoles et al., 2017; Stiennon et al., 2020; Takeshita et al.,
2024; Saggion & Hirst, 2017). Other approaches specifically target the argumentative structure of
scientific papers, helping writers to organise contributions and claims more effectively (Lauscher
et al., 2018a). Nowadays, general purpose LLMs such as ChatGPT or tools tailored for the task such
as Grammarly show the variety of support that NLP tools can provide to authors (Wu et al., 2023;
Ahn, 2024; Khalifa & Albadawy, 2024).

At the same time, NLP methods are being developed to assist reviewers and editors in evaluating
submissions. These include systems for detecting potential issues such as lack of clarity, weak ar-
gumentative support, or even factual inconsistencies and up to scientific fraud (Thakkar et al., 2025;
Fromm et al., 2021; Freedman & Toni, 2024). Such tools can also facilitate meta-reviewing by
providing summaries of peer reviews and identifying points of disagreement among reviewers (Ku-
mar et al., 2023). While AI tools show promises in improving the peer-review process (Tyser et al.,
2024), there are also various risks associated such as breaches of confidentiality, lack of transparency
and biases (Perlis et al., 2025). Our current work situates itself in the context of NLP tools for sup-
porting the understanding of scientific writing; specifically, it addresses one of the major critiques
toward the automation of such process by offering a transparent way of examining its workflow.

Interpretable NLP. As Figure 1 illustrates, scientific texts routinely make use of comparatives like
“faster” while leaving one of the argument slots implicit, with the context determining the omitted
referent. LLMs demonstrate considerable competence in resolving these and other more syntactic
forms of anaphora such as pronouns (Zhu et al., 2025), but the resolved referent itself – concretely,
what was being referred to – remains implicit. Interpretable NLP is a recent research direction
which aims to support comprehension (and production) of text in a more explicit and transparent
way (He, 2023). By generating code that formalises the interpretation of a comparative like “faster”,
our approach also makes these implicit references explicit; combining our system with interpretable
NLP would allow the user to explore the linguistic interpretation as well.

6 CONCLUSIONS AND FUTURE WORK

We introduced a proof-of-concept system for authoring transparent, data-driven documents by com-
bining LLM-based code synthesis with Fluid’s provenance-tracking runtime. Our evaluation on
SciGen shows that the approach can reliably link natural language claims to their underlying data,
while also revealing common failure modes such as ambiguity and misleading input.

Future work includes reducing reliance on predefined helper functions such as growShrink and
trendWord. While there is an advantage in using a predefined set of helpers (in that they offer a
uniform framework for interpreting a given scholarly document), we also aim to enable the system
to operate in their absence, for instance by turning “definition not found” errors into augmented
prompts that trigger automatic generation of missing definitions. We also plan to broaden the scope
of supported artifacts, extending interpretation to visualisations and intermediate datasets derived
from cleansing or aggregation, and to cover additional idioms such as cardinals, multiplicatives,
rounding, and graded adjectives.

Another priority is improving integration and validation. Embedding the system into developer
and authoring environments such as VSCode or Cursor would make the workflow more seamless,
while automatic generation of counterfactual test cases could strengthen validation at authoring
time. Finally, distinguishing between referential terms with fixed denotations and queries with data-
dependent values may help in repairing false or inconsistent statements, ensuring that generated
expressions remain aligned with both the data and the author’s intent.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REPRODUCIBILITY STATEMENT.

To facilitate reproducibility, we provide a zip archive in the supplementary materials containing
the complete source code, the datasets used in our experiments, and a README file with detailed
instructions for running the scripts.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Raia Abu Ahmad, Aida Usmanova, and Georg Rehm. The ClimateCheck shared task: Scientific
fact-checking of social media claims about climate change. In Tirthankar Ghosal, Philipp Mayr,
Amanpreet Singh, Aakanksha Naik, Georg Rehm, Dayne Freitag, Dan Li, Sonja Schimmler, and
Anita De Waard (eds.), Proceedings of the Fifth Workshop on Scholarly Document Processing
(SDP 2025), pp. 263–275, Vienna, Austria, jul 2025. Association for Computational Linguistics.
ISBN 979-8-89176-265-7. doi: 10.18653/v1/2025.sdp-1.24.

Sangzin Ahn. The transformative impact of large language models on medical writing and pub-
lishing: current applications, challenges and future directions. The Korean journal of physiology
& pharmacology: official journal of the Korean Physiological Society and the Korean Society of
Pharmacology, 28(5):393–401, 2024.

Jon Barwise and Robin Cooper. Generalized quantifiers and natural language. Linguistics and
Philosophy, 4(2):159–219, June 1981. ISSN 1573-0549. doi: 10.1007/BF00350139.

Joe Bond, Cristina David, Minh Nguyen, Dominic Orchard, and Roly Perera. Cognacy queries
over dependence graphs for transparent visualisations. In Viktor Vafeiadis (ed.), Programming
Languages and Systems, pp. 144–171, Cham, 2025. Springer Nature Switzerland. ISBN 978-3-
031-91118-7.

Elena Cabrio and Serena Villata. A natural language bipolar argumentation approach to support
users in online debate interactions. Argument & Computation, 4(3):209–230, 2013.

Steffen Eger, Johannes Daxenberger, and Iryna Gurevych. Neural end-to-end learning for computa-
tional argumentation mining. arXiv preprint arXiv:1704.06104, 2017.

Gabriel Freedman and Francesca Toni. Detecting scientific fraud using argument mining. In Pro-
ceedings of the 11th Workshop on Argument Mining (ArgMining 2024), pp. 15–28, 2024.

Michael Fromm, Evgeniy Faerman, Max Berrendorf, Siddharth Bhargava, Ruoxia Qi, Yao Zhang,
Lukas Dennert, Sophia Selle, Yang Mao, and Thomas Seidl. Argument mining driven analysis
of peer-reviews. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp.
4758–4766, 2021.

Debela Gemechu, Ramon Ruiz-Dolz, and Chris Reed. Aries: A general benchmark for argument
relation identification. In 11th Workshop on Argument Mining, ArgMining 2024, pp. 1–14. Asso-
ciation for Computational Linguistics (ACL), 2024.

Deniz Gorur, Antonio Rago, and Francesca Toni. Can large language models perform relation-
based argument mining? In Proceedings of the 31st International Conference on Computational
Linguistics, pp. 8518–8534, 2025.

Yulan He. Interpretable natural language understanding. In Proceedings of the 32nd ACM Inter-
national Conference on Information and Knowledge Management, CIKM ’23, pp. 1–2, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701245. doi:
10.1145/3583780.3615315.

Wanfei Hu, Guiliang Yan, Jingyu Zhang, Zhenli Chen, Qing Qian, and Sizhu Wu. Analysis of
scientific paper retractions due to data problems: Revealing challenges and countermeasures in
data management. Accountability in Research, 0(0):1–31, 2025. doi: 10.1080/08989621.2025.
2531987.

Mohamed Khalifa and Mona Albadawy. Using artificial intelligence in academic writing and re-
search: An essential productivity tool. Computer Methods and Programs in Biomedicine Update,
5:100145, 2024.

Sandeep Kumar, Tirthankar Ghosal, and Asif Ekbal. When reviewers lock horn: Finding disagree-
ment in scientific peer reviews. arXiv preprint arXiv:2310.18685, 2023.

Daniel Lassiter. Graded Modality: Qualitative and Quantitative Perspectives. Oxford University
Press, 06 2017. ISBN 9780198701347. doi: 10.1093/oso/9780198701347.001.0001.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Anne Lauscher, Goran Glavaš, and Kai Eckert. Arguminsci: A tool for analyzing argumentation and
rhetorical aspects in scientific writing. In Proceedings of the 5th Workshop on Argument Mining,
pp. 22–28, 2018a.

Anne Lauscher, Goran Glavaš, Simone Paolo Ponzetto, and Kai Eckert. Investigating the role of
argumentation in the rhetorical analysis of scientific publications with neural multi-task learning
models. Association for Computational Linguistics, 2018b.

Maria Liakata, Shyamasree Saha, Simon Dobnik, Colin Batchelor, and Dietrich Rebholz-
Schuhmann. Automatic recognition of conceptualization zones in scientific articles and two
life science applications. Bioinformatics, 28(7):991–1000, 02 2012. ISSN 1367-4803. doi:
10.1093/bioinformatics/bts071.

Marco Lippi and Paolo Torroni. Argument mining: A machine learning perspective. In International
Workshop on Theorie and Applications of Formal Argumentation, pp. 163–176. Springer, 2015.

Nafise Sadat Moosavi, Andreas Rücklé, Dan Roth, and Iryna Gurevych. SciGen: a dataset for
reasoning-aware text generation from scientific tables. In Thirty-fifth Conference on Neural In-
formation Processing Systems, 2021.

Courtney Napoles, Keisuke Sakaguchi, and Joel Tetreault. Jfleg: A fluency corpus and benchmark
for grammatical error correction. arXiv preprint arXiv:1702.04066, 2017.

Raquel Mochales Palau and Marie-Francine Moens. Argumentation mining: the detection, classifi-
cation and structure of arguments in text. In Proceedings of the 12th international conference on
artificial intelligence and law, pp. 98–107, 2009.

Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang. Linked visualisations via galois
dependencies. Proc. ACM Program. Lang., 6(POPL), 2022. doi: 10.1145/3498668.

Roy H Perlis, Dimitri A Christakis, Neil M Bressler, Dost Öngür, Jacob Kendall-Taylor, Annette
Flanagin, and Kirsten Bibbins-Domingo. Artificial intelligence in peer review. JAMA, 2025.

Fotis Psallidas and Eugene Wu. Smoke: fine-grained lineage at interactive speed. Proc. VLDB
Endow., 11(6):719–732, feb 2018. ISSN 2150-8097. doi: 10.14778/3199517.3199522. URL
https://doi.org/10.14778/3199517.3199522.

Jonathan Roberts, Kai Han, Neil Houlsby, and Samuel Albanie. Scifibench: Benchmarking large
multimodal models for scientific figure interpretation. December 2024.

Horacio Saggion and Graeme Hirst. Automatic text simplification, volume 32. Springer, 2017.

Marta Skreta, Naruki Yoshikawa, Sebastian Arellano-Rubach, Zhi Ji, Lasse Bjørn Kristensen,
Kourosh Darvish, Alán Aspuru-Guzik, Florian Shkurti, and Animesh Garg. Errors are useful
prompts: Instruction guided task programming with verifier-assisted iterative prompting. CoRR,
abs/2303.14100, 2023. URL https://doi.org/10.48550/arXiv.2303.14100.

Christian Stab and Iryna Gurevych. Annotating argument components and relations in persuasive
essays. In Proceedings of COLING 2014, the 25th international conference on computational
linguistics: Technical papers, pp. 1501–1510, 2014a.

Christian Stab and Iryna Gurevych. Identifying argumentative discourse structures in persuasive es-
says. In Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pp. 46–56, 2014b.

Christian Stab and Iryna Gurevych. Parsing argumentation structures in persuasive essays. Compu-
tational Linguistics, 43(3):619–659, 2017.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in neural information processing systems, 33:3008–3021, 2020.

Sotaro Takeshita, Tommaso Green, Niklas Friedrich, Kai Eckert, and Simone Paolo Ponzetto. Cross-
lingual extreme summarization of scholarly documents. International journal on digital libraries,
25(2):249–271, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Simone Teufel and Marc Moens. Summarizing scientific articles: experiments with relevance and
rhetorical status. Computational linguistics, 28(4):409–445, 2002.

Simone Teufel, Advaith Siddharthan, and Colin Batchelor. Towards domain-independent argumen-
tative zoning: Evidence from chemistry and computational linguistics. In Proceedings of the 2009
conference on empirical methods in natural language processing, pp. 1493–1502, 2009.

Nitya Thakkar, Mert Yuksekgonul, Jake Silberg, Animesh Garg, Nanyun Peng, Fei Sha, Rose Yu,
Carl Vondrick, and James Zou. Can llm feedback enhance review quality? a randomized study of
20k reviews at iclr 2025. arXiv preprint arXiv:2504.09737, 2025.

Stephen E Toulmin. The uses of argument. Cambridge university press, 2003.

Keith Tyser, Ben Segev, Gaston Longhitano, Xin-Yu Zhang, Zachary Meeks, Jason Lee, Uday Garg,
Nicholas Belsten, Avi Shporer, Madeleine Udell, et al. Ai-driven review systems: evaluating llms
in scalable and bias-aware academic reviews. arXiv preprint arXiv:2408.10365, 2024.

Elfia Bezou Vrakatseli, Oana Cocarascu, and Sanjay Modgil. Can large language models understand
argument schemes? In The 63rd Annual Meeting of the Association for Computational Linguistics
(ACL 2025), 2025.

Nicholas Weber and Sebastian Karcher. Seeking justification: How expert reviewers validate empir-
ical claims with data annotations. In Proceedings of the ACM/IEEE Joint Conference on Digital
Libraries in 2020, JCDL ’20, pp. 227–234, New York, NY, USA, 2020. Association for Comput-
ing Machinery. ISBN 9781450375856. doi: 10.1145/3383583.3398537.

Haoran Wu, Wenxuan Wang, Yuxuan Wan, Wenxiang Jiao, and Michael Lyu. Chatgpt or
grammarly? evaluating chatgpt on grammatical error correction benchmark. arXiv preprint
arXiv:2303.13648, 2023.

Yue Zhang, Qi Liu, and Linfeng Song. Sentence-state lstm for text representation, 2018. URL
https://arxiv.org/abs/1805.02474.

Xiaomeng Zhu, Zhenghao Zhou, Simon Charlow, and Robert Frank. Meaning beyond truth con-
ditions: Evaluating discourse level understanding via anaphora accessibility. In Wanxiang Che,
Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the
63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 8824–8842, Vienna, Austria, jul 2025. Association for Computational Linguistics. ISBN
979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.432.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

APPENDICES

A INTERPRETATIONAGENT SYSTEM PROMPT

You are a specialized language model for the Fluid functional programming language.
Your task is to analyze a JSON object that represents the user’s Fluid program and its context,
and to generate the Fluid expression that must replace the [REPLACE value=] placeholder inside
the paragraph.

Input Structure
The JSON input always contains:
-datasets: one or more JSON-like arrays containing the data used by the program
(scenario-related key–value pairs).
-imports: Fluid helper libraries provided by the user’s program.
-code: Additional Fluid functions and definitions from the user’s program.
-paragraph: A description that includes exactly one [REPLACE ...] tag.
-paragraphValue: The correct final version of the paragraph (ground truth).

Note: imports, code, and datasets are part of the user’s Fluid program, not just supporting context.
Your output must be consistent with these definitions.

Task
Identify the [REPLACE ...] tag in paragraph.
If the tag has the value property, generate a Fluid expression that evaluates exactly to that value.
If not, infer the correct value by comparing paragraph, paragraphValue, and (if needed) datasets.
The result must always be a Fluid expression that evaluates to a string.

Output Format
Return only the Fluid expression, nothing else.

Constraints
-Output exactly one valid Fluid expression.
-Ensure it is syntactically correct and consistent with the provided imports and code.

B SUGGESTIONAGENT SYSTEM PROMPT

You are an expression detector for Fluid language.
Fluid is a functional programming language used to represent structured data queries and comparisons in a
transparent way.

TASK DESCRIPTION

Given a natural language paragraph and a structured dataset, identify and annotate the parts of the
paragraph that can be replaced by a Fluid expression.

You must detect:
- Explicit values (e.g., scores, names, numbers)
- Comparative expressions (e.g., *better than*, *worse*, *higher*, *more than*)
- Superlative or aggregated expressions (e.g., *the best*, *highest*, *maximum*, *top performer*)

FORMAT

Replace each detected expression with:

[REPLACE value=...]

Where ‘value‘ contains the **original text** of the expression (e.g., ”91.57”, ”better”, ”the best”) —
not the rewritten logic or Fluid code.

IMPORTANT RULE

When replacing comparative or superlative expressions (like ”better”, ”worse”, ”the best”, ”highest”),
the ‘value‘ **must be the exact original word or phrase** from the paragraph.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Correct:
S-LSTM gives [REPLACE value=”the best”] reported results.
BiLSTM performs [REPLACE value=”better”] than LSTM.

Incorrect:
S-LSTM gives [REPLACE value=”getMaxBy f1 data”] results.
BiLSTM performs [REPLACE value=”BiLSTM.acc ¿ LSTM.acc”] than LSTM.

If needed, annotate separate values independently:

Example:
BiLSTM gives [REPLACE value=”91.2”]% accuracy, which is [REPLACE value=”better”] than LSTM.

EXAMPLES

Example Fluid code:

let bestModel = getMaxBy f1 data in bestModel.model

INPUT EXAMPLE

Paragraph:
For NER (Table 7), S-LSTM gives an F1-score of 91.57% on the CoNLL test set, which is significantly
better compared with BiLSTMs. Stacking more layers of BiLSTMs leads to slightly better F1-scores
compared with a single-layer BiLSTM. Our BiLSTM results are comparable to the results reported
by Ma and Hovy (2016) and Lample et al. (2016).
In contrast, S-LSTM gives the best reported results under the same settings.
In the second section of Table 7,Yang et al. (2017) obtain an Fscore of 91.26%.

Data:
[
–model: ”BiLSTM”, f1: 90.96˝,
–model: ”2 stacked BiLSTM”, f1: 91.02˝,
–model: ”3 stacked BiLSTM”, f1: 91.06˝,
–model: ”S-LSTM”, f1: 91.57˝,
–model: ”yang2017transfer”, f1: 91.26˝

]

OUTPUT EXAMPLE

For NER (Table 7), S-LSTM gives an F1-score of [REPLACE value=91.57]% on the CoNLL test set,
which is [REPLACE value=”better”] compared with BiLSTMs.
Stacking more layers of BiLSTMs leads to [REPLACE value=”better”] F1-scores compared with a single-layer BiLSTM.
Our BiLSTM results are comparable to the results reported by Ma and Hovy (2016) and Lample et al. (2016).
In contrast, S-LSTM gives [REPLACE value=”the best”] reported results under the same settings.
In the second section of Table 7, Yang et al. (2017) obtain an Fscore of [REPLACE value=91.26]%.

15

