<CTRL > +

FOCUS

} work with code fragments
} editable code projections

<ALT> + <TOOL PARADIGM SHIFT>»?

BEHAVIOUR PRESERVATION

} side-effect awareness
} safe system maintenance

TRANSPARENCY

} modeless user interface
} fully object-centric
} wizard-free environment

“Isn’t refactoring just the latest
fad?”

We believe behaviour-preserving editing
is central to building the next
generation of applications

“Why am | forced to care about
source files?”

Source files are required today for tool
interoperability, but are not interesting
from a design point of view

“Does my program still have the
same meaning since refactoring
it?”

Refactor

Comprehend

“Why should | switch to a
semantic tool?”

source as database

} relations
} queries
} transactions

\ _ \ _

structured documents

} integrate syntax & semantics

microfactoring

} composable micro-kernel
} control/data flow model

direct manipulation

} semantic editing
} exploit keyboard

Semantic tools bring the power of
design-level editing, but need not impair
the ability to edit textually

That should be a truism, but no tool
today makes that guarantee

“Isn’t this just intentional
programming?”

“Why do | rarely use the
refactoring facilities in my IDE?”

Programming languages should be
embraced — not replaced

Quite simply because most well-known
refactorings are too coarse-grained

GRANULARITY

} whitebox refactoring

ACCURACY

} deep language awareness

return _dept; } into parameter type, which can be used in a variety of common situations, not just on methods which return outstanding;

have been freshly extracted as part of Hide delegate. }

Microfactoring }

public void setDepartment (Department dept) ({

public void firedohn () {

A significant portion of a software developer’'s time is spent refactoring: preparing for the insertion of final Person john = ...;

new functionality, and consolidating existing functionality, without changing the current behaviour of the
system. Without this ongoing maintenance effort, entropy rapidly takes hold and delivering further } manager = getManager (john);
features or bug-fixes becomes difficult. } /] ..

Now imagine the developer wishes to generalize the getOutstanding () method further, so that it is not

coupled to the current instance, and furthermore works with any enumeration of orders. His first step is
to Make method static (roughly the inverse of Push method into parameter type):

Things get even more interesting when we carry out a similar decomposition of well-known “primitives"”
such as Extract method. A set of even more primitive and general operations emerges. Again we take an
example from Fowler, this time Extract method:

_dept = dept; final Person manager;

. tell John's manager the news

void printOwing { static double getOutstanding (final Vector orders) {

Interest in software refactoring and tools for assisting with this activity has been growing steadily over the class Department {
last decade, thanks to the influential efforts of Roberts and Brant, Opdyke, Fowler and others. However
the refactorings discussed to date, such as Extract method, are in desperate need of decomposition into
more primitive, but more widely applicable refactorings, such as Push code into method. By identifying a
kernel of micro-refactoring primitives we gain new insights into the opportunities for tools to change the }

way developers work.

Enumeration e = orders.elements(); Enumeration e = orders.elements();

private Person _manager; } :
double outstanding = 0; double outstanding;

while (e.hasMoreElements()) { // ..

Order each = (Order) e.nextElement (); }

outstanding += each.getAmount () ;

public Department (Person manager) ({ At this point the developer may notice that other clients use a similar query and decide that it therefore

more properly belongs on the Person class itself. She can achieve this by simply selecting the argument
whose type is to become the host class of the query:

manager = getManager ([
printDetails (outstanding);

_manager = manager;

Finally, he selects the call which obtains the elements of the vector:

Enumeration e = orders|=ni=ia=-10) ;

} and applies Push code out of method, effectively replacing the vector parameter by an enumeration:

public Person getManager () ({

return _manager;
and applying Push method into parameter type. The client-side transformation is intuitive:

A micro-refactoring kernel }

} manager = . getManager ()

The following Java examples show how a macro-refactoring like Extract method can be decomposed into
its parts. Our first example is based on Fowler's Hide delegate refactoring. As a manual activity, this is
bread and butter to any experienced OO programmer. Yet no tool supports this important refactoring, not
because it is hard to implement, but because it cannot be applied as a single transformation without the

The developer wishes to extract the calculation of outstanding (shown selected above) to a new method
so that it can be used elsewhere:

: : static double getOutstanding (final Enumeration e) ({
To obtain a person’s manager, the following client code is used: and the getManager () method is now where it belongs (and as one would expect, no longer static):

double outstanding;

manager = john.getDepartment () .getManager () class Person {

void printOwing () { // ..

explicit selection of an actor for each role: client, server and delegate. If however Hide delegate is
broken down into constituent operations, each of which can be applied directly without requiring
complicated decisions to be made in advance, then the developer can achieve Hide delegate without
having to specify all arguments up front. In effect, she composes an instance of Hide delegate by stepwise
interaction with her source code, obtaining confidence-building feedback at each step.

The following code is adapted from Fowler:

class Person {
private Department _dept;
public Department getDepartment () ({

If client code becomes riddled with traversals of the path from person to manager, then the case for

centralizing this traversal in one place becomes fairly strong. The first step is a natural one: select the
code which navigates the path:

uELETe(Sh i gTe)stel. getDepartment () . getManager ()

and apply Extract method. This creates a new method, in the client class, which is static as it uses no
members of its host class:

class Client {
public static Person getManager (Person p) ({
return p.getDepartment () .getManager () ;

// ...

public Person getManager () ({
return getDepartment () .getManager() ;

}
}

The benefits of decomposing Hide delegate and similar refactorings in this way are significant. The user
does not need to have memorized a large repertoire of macroscopic refactorings such as Hide Delegate.
Nor need she hold a complicated conversation with her tool before the activity starts. Instead she can
decide how to proceed at each step, perhaps even exploring an entirely different refactoring which only
suggests itself halfway through the process. Finally, she has a new primitive at her disposal, Push method

double outstanding = getOutstanding() ;
printDetails (outstanding);
}
double getOutstanding () ({
Enumeration e = _orders.elements();
double outstanding = O;
while (e.hasMoreElements()) {
Order each = (Order) e.nextElement ();
outstanding += each.getAmount () ;

}

and forcing each call site to wrap its vector argument in a query for its elements:

void printOwing ({
double outstanding = getOutstanding(_orders.elements());
printDetails (outstanding) ;

}

Rather than having to re-inline the entire method and start again, the developer was simply able to inline
that part of the method which he didn't want to be shared. A tool based on these principles gives
developers power editing features with no loss of control.

EFRGMNOSIS

the art of the science of software

ergnosis.com

© Copyright 2004 Ergnosis Ltd. All rights reserved

