
A Delta-Driven Execution Model for Semantic Computing
Roly Perera

Dynamic Aspects
14 King Square
Bristol BS2 8JJ
United Kingdom

+44 (0)117 924 8915
roly.perera@dynamicaspects.com

Jeff Foster
Dynamic Aspects
14 King Square
Bristol BS2 8JJ
United Kingdom

+44 (0)117 924 8915
jeff.foster@dynamicaspects.com

György Koch
Dynamic Aspects
14 King Square
Bristol BS2 8JJ
United Kingdom

+44 (0)117 924 8915
george.koch@dynamicaspects.com

ABSTRACT
We describe (and demonstrate) the execution model of a computing
platform where computation is both incremental and data-driven.
We call such an approach delta-driven. The platform is intended as
a delivery vehicle for semantically integrated software, and thus
lends itself to the semantic web, domain-driven development, and
next-generation software development environments. Execution is
transparent, versioned, and persistent. This technology - still at an
early stage - is called domain/object.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
interactive environments; D.2.11 [Software Engineering]:
Software Architectures – data abstraction, patterns; D.2.12
[Software Engineering]: Interoperability – data mapping; D.3.2
[Programming Languages]: Language Classifications - data-flow
languages; D.3.3 [Programming Languages]: Language
Constructs and Features – constraints; D.3.4 [Programming
Languages]: Processors – code generation, incremental compilers,
run-time environments.

General Terms: Design, Languages

Keywords: Delta-driven execution, incremental computation,
adaptive functions, lazy memoization, relational programming

1. OVERVIEW
Domain/object is a functional, persistent, versioned, transparent,
incremental, reactive execution environment embedded in Java.
Data values are “live” and update automatically in response to
changes in dependent values, like cells in a spreadsheet. The design
philosophy places a premium on simplicity and emphasises elegance
over featurism. Our goal is to enable a new breed of application
where components are integrated in a way only possible today with
the help of large amounts of manual boilerplate. Suitable
applications include domain-driven development, the semantic web
and next-generation software development tools.

The execution model of domain/object is a radical departure from
that of most programming languages and virtual machines in use
today, in that execution takes place solely by the propagation and
interpretation of structural deltas. When a data value changes, the
effects of that change are propagated recursively to all dependent
data values, meaning that data values are “live” [32], not snapshots
like variables are in traditional programming languages.
Domain/object is thus a kind of dataflow language, and abstractly

more similar to a spreadsheet than a standard programming
language.

When changes propagate across domains, the change propagation
process plays the role of an interpreter in the traditional computer
science sense, incrementally translating changes in the “source”
language as they are received into changes in the “target” language.
Domain/object is therefore ideal for hosting interactive applications
whose architectures are best considered to be sets of interconnected
domain models.

The plan of this paper is as follows. In section 2 we briefly describe
the background and motivation for our research. Section 3
describes the broad principles which underly the platform, such as
the unification of compile-time and run-time, and key behavioural
characteristics such as incrementality and “liveness”. We also
discuss in detail various design decisions and their relevant context.
Section 4 presents a short case study of a “domain-driven”
implementation of Java called domain/j, which was the primary
motivation for the development of domain/object. Section 5
summarises some of our experiences of embedding a functional
dataflow language in Java. In section 6, we attempt to summarise
the large body of related work. Finally, section 7 closes with some
thoughts on the many exciting possibilities for future research.

2. BACKGROUND AND MOTIVATION
Domain/object began life as a core infrastructural component of a
new Java programming environment called domain/j which follows
in the footsteps of research projects such as Harmonia [17], the
Mjølner system [22] and Self [33]. Domain/j is a language-centric
implementation of Java where the user interacts directly with the
Java language itself rather than a separate “IDE”. As such it relies
heavily on the availability of various views or models of the user's
program, including a “physical” or syntactic view, a more abstract
“logical” view (sometimes, somewhat confusingly, known as a
“semantic” model), dataflow and control-flow models of the
program, and so on. These views must be live, in other words kept
up-to-date as the user edits code; incremental, so the user does not
have to continually rebuild or refresh; bidirectional, in that the user
can in principle make changes at any level of description (e.g.
textually or semantically) and have the models remain synchronised;
and transactional, so that changes can be safely rolled back if a
failure occurs deeply nested within a compound edit and so that
flexible granularities of view synchronisation can be obtained.

Designing an application with these traits using existing
programming languages involves the development of a considerable
amount of infrastructure for managing change discovery and
notification. Moreover, one might interpret many areas of growing
interest in the field of software development – including domain-
driven development [14], aspect-oriented programming [21],
intentional programming [30] and generative programming [6] – as

Copyright is held by the author/owner(s).
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

63

to some extent facets of an emerging and compelling paradigm
where any application can be thought of as a set of intrinsically
connected models or views.

We refer to this broad emerging paradigm as semantic computing
because it emphasises the fact that computation is about semantic
interpretation [29] – the translation of one domain into another.
Truly semantic computing requires a much tighter connection
between software components, such that merely to express
(declaratively) the relationship between x and y is to ensure that x is
automatically re-synchronised as y changes.

3. KEY PRINCIPLES OF DOMAIN/OBJECT
3.1 Liveness
Liveness is the property by which data values always appear up-to-
date and is the essence of the “connectedness” required for true
semantic computing. Liveness eliminates in quite a profound way
any distinction between compile-time, in the traditional sense, and
runtime. For example all test assertions are “live”; a test fails as
soon as the programmer makes a change which violates the
assertion. It also dispenses with the notion of control flow, leaving
dataflow as the only mechanism by which work gets done.
Continuing with the testing example, tests do not need to be written
in the “make a change; make an assertion; make a change; make an
assertion” style common with Java or C#. Test assertions must hold
generally, not just when “control” flows over them. This is a
significantly simplified programming model for reasons argued for
in detail by other authors [10].

3.1.2 Programs as mutable queries
In simple terms the domain/object execution model can be described
as the incremental modification of structure interwoven with the
incremental reactive change of any dependent structure. To
understand the incremental execution model, we first need to
consider the structure of the domain/object “universe”.

Domain/object represents all data and programs ultimately as
functions. A function is a left-univalent relation, a set of ordered
pairs with unique left-hand sides. Certain species of function which
satisfy particular properties are of significance in domain/object.
For example a tree is a function where there is exactly one path
between any two objects. There is a tree-like function called
contains (or where grammatically convenient, containment), and we
define a domain to be any maximal set of objects which is closed
under containment.

Functions, however are not mutable but rather are static, purely
extensional entities. What we traditionally think of as a program is
in domain/object a live projection of this extensional structure,
consisting of a graph of mutable references each of which points to
an underlying constant or function application (see Figure 1 below).
A reference represents the “selection” – either explicitly, via the
user, or implicitly, via the reactive propagation of updates to the
program – of a particular argument for some function f. Mutating
the reference selects which part of f's extension is being “looked at”
by the reference. It is quite accurate therefore to describe the
program as a mutable query of the underlying extensional structure,
and computation as the synchronisation of the output of the query in
response to changes to the inputs to the query. To interact with a
domain/object program – either as a programmer or an end-user – is
simply to mutate one or more of the references in the graph and
observe the propagation of changes to the graph of references in
response to that change. The approach is reactive [8] in that the

system is passive in the absence of external changes and responds to
any such changes by propagating the changes to all dependent
values.

References roughly subsume the roles of expressions and variables
in traditional programming languages. The main difference is that
they are live, rather than snapshots taken at a particular point in the
control flow, like traditional procedural variables. Although
references are somewhat like variables, there is nothing that
corresponds directly to the traditional notion of assignment. Instead,
one relates references to other references by connecting them
together into applications of functions. These applicative structures
are the structures through which data flows, responding to deltas on
their “source”, or input, references by generating the appropriate
deltas in their “target” references, or outputs. An applied function is
either primitive, in which case its workings are completely hidden,
or aggregate, in which case its workings are transparent, the
functions being realised by a graph of internal references mediating
between the argument references and the output references.
Functions return values by writing to an output reference.

Since there is no way to mutate an object other than by applying a
delta to it, there need be no separate difference discovery and
notification mechanism, whereby modified objects inspect their state
in response to external requests and fire a description of the
resulting change to all dependent objects. Instead the same delta
serves (in the future tense) as a request for change and (in the past
tense) as a description of the resulting change. The Observer pattern
[11] thus comes “built in”.

Finally, we should note that domain/object structures are algebraic,
in other words uniquely built out of applications of primitive
constructors. Effectively, an object is nothing more than the
canonical delta that builds it from the null object. Since everything
that happens in domain/object happens ultimately by way of the
translation of one delta sequence into another, this simple algebraic
notion of object is sufficient for all purposes.

The algebraic approach unifies construction with discovery, merging
the Composite and Visitor patterns [11] into one. If two non-empty
objects o1 and o2 are connected semantically for the first time, it is as

Figure 1: Application as the replacement of an unbound
reference by another reference.

64

though o2 were empty at the point of connection and then
immediately populated with its sub-structure. Equivalently we can
say that o1 and o2 were always connected but that the actions
describing the construction of o2 were batched up and published in
one go rather than propagated incrementally.

3.1.3 Application and partial application
To apply a domain object function to an argument reference is to
copy its prototypical definition into the calling context, splicing in
the argument reference in place of one of the unbound inputs of the
function. This is shown in bottom half of Figure 1 above, where
the function times() is shown applied to to 5 and plus(3,4).

The question marks in Figure 1 indicate a reference whose referent
is the primitive constant indeterminate. This represents either an
unbound or an unknown input, or an output whose value cannot be
determined (say because insufficient inputs are determinate).
Indeterminacy of references is a general enough concept in
domain/object to serves a number of purposes, including support for
non-strictness, trivalent logic, and partial application.

Partial application is intrinsically supported because all functions are
curried. The iterated application of an n-ary function f() to m
arguments (where m ≤ n) yields an (n-m)-ary function. (The partial
application times(5) appears in the top half of Figure 1.) Under our
prototype-based model of application (where to apply is simply to
bind an unbound input), composition is just a special case of partial
application. Composing f() and g() is the same as applying f() to g();
in both cases, the output of g() is passed as the input to f().
Composition is just a name we might give to application when g()
has unbound inputs, as Figure 2 below shows:

In the figure, the upper graph corresponds to the application of not()
to the expression isVowel(character('c')), and the lower graph
corresponds to the composition of not() with the function isVowel().

As a convenience for embedding domain/object code in Java, the
constant unbound, which is an identity element of apply() for any
function (apply(f,unbound) = f for any f), can be used to carry out a
positional form of partial application. For example the fact that
lessThan() is not commutative might lead to the following
programming error:
 lessThanFive = lessThan(number(5));
 assert_(lessThanFive(number(3))); // fails!

which could then be remedied as follows:
 lessThanFive = lessThan(unbound(),number(5));
 assert_(lessThanFive(number(3)); // OK

The use of unbound allows number(5) to be bound to the second
rather than the first argument of lessThan(). (Primitive types such as
integers and characters are denoted via an equivalent primitive
function, e.g. number() or character(). Sometimes these functions
are omitted from examples for brevity.)

3.1.4 Recursion and non-strictness
Since to call a domain/object function by name is to copy its body
into the calling context, a function which directly or indirectly calls
itself induces an infinitely deep structure, at least conceptually. (In
this respect domain/object differs from dataflow languages which
model recursion with cyclic structures, distinguishing invocation
context by associating a suitable label with each dataflow token, e.g.
[34], [15]).

We avoid instantiating an infinite structure by taking the approach
of Subtext [10] and ignoring infinitely deep parts of the structure
which are contained within dead branches of conditionals. This
emulates the behaviour of non-strict lazy functional languages when
a non-terminating but unused argument is passed to an otherwise
terminating function, and is achieved by making the actual copying
of the function body demand-driven (lazy). When a calling function
f() connects to the output of another function g(), as in f(g()), the
body of g() is not actually spliced into f() unless f() actually requires
the value of g(). Certain primitives such as and(), or() and if() are
non-strict in their arguments and will ignore arguments whose
values they are not concerned with. if() for example only queries the
value of either the “then” branch or the “else” branch, leaving the
other branch effectively dead.

3.2 Incrementality
Incrementality is another fundamental characteristic of the
domain/object system. Incrementality makes domain/object
functions very flexible and naturally suited to interactive
applications such as user interfaces, document editors and
programming environments. In some cases, the incremental
computation is actually faster overall than batch computation,
because it can take advantage of intermediate results, particularly
with problems that are amenable to the “strength reduction”-type
optimisation common in optimising compilers [25]. Full
incrementality is clearly slower than batch computation for certain
other kinds of problem, however; an area for future investigation is
allowing non-incremental optimisations to be added transparently to
a domain/object application.

Incrementality has two components: memoisation and adaptivity.
Memoisation [27] is the caching of the value of a function for a
given argument, and trades storage overhead and lookup time for
compute time. The fact that certain domain/object primitives such
as if() are non-strict in their arguments means that our memoisation
scheme must not force arguments to be evaluated; work on this
aspect of the memoisation design has only just begun and will
probably be based on Hughes' work on lazy memoisation [18].
Adaptivity [1] is a strategy which ensures that only dependent data
values are re-evaluated when change occurs and trades the cost of
maintaining explicit dependency information for the benefit of
avoiding unnecessary computation. Domain/object functions are
inherently both adaptive and memoised. ([2] discusses how these
features can be combined non-orthogonally.)

3.2.1 Memoisation
Memoisation is a technique that retains previously calculated values
so that they can be used again without having to be recomputed.
Memoisation takes place the first time a function is applied to a
given argument. If a function has already been instantiated with the
supplied inputs (at any version of the system), the output value of
the existing invocation is used to set the output reference.
Otherwise, the body is instantiated as normal and used to determine
the value of the output reference for the given inputs, and the result
memoised. The memoisation table is persisted between sessions,

Figure 2: Application as composition

65

which means that once any value is calculated, it never has to be
calculated again, modulo any limits on offline storage capacity. The
abstraction is that computation is lazy discovery of the extensions of
functions.

3.2.2 Adaptivity
Adaptivity is fundamental to the domain/object design since
evaluation can only occur in one of two says:
• in a data-driven fashion, in response to a dependee value

changing and causing a dependent value to resynchronise (and
if a delta is in turn implied in the dependent value then its
dependents will be recursively re-evaluated, and so on);

• in a demand-driven fashion, when a dependent data value is
connected for the first time (or more generally, reconnected
after a period of disconnection), which is semantically
equivalent to a composition of data-driven updates (this is
described in more detail in section 3.3)

Compound functions derive their incrementality from the primitive
functions of which they are ultimately comprised, and therefore do
not themselves need to be written in an explicitly incremental style.

3.3 Transactions
Real-world applications rarely operate in a closed universe. Users
add new queries or connect new client applications. Developers add
new tests and new application code. Even when the scope of the
dependency closure is known in advance, it is typically too large to
require it to be instantiated entirety up front and part of the “live”
reactive structure of the application. It is critical therefore to support
the dynamic addition of new dependent references.
What this means is that it is legal for a reference f to be instantiated
even though one of its dependent references g (for example an
argument reference of a caller-to-be) has not yet been instantiated.
This violates the incremental dataflow model, where changes
propagate as soon as they are available, since changes to f cannot be
seen by g if g does not exist. Instead, we allow g to be instantiated
at a later time and only at that point receive all the changes that have
happened to f since it was created. We call this process of “catching
up” with the state of a dependee reference synchronisation.
Support for reference divergence and synchonisation is an essential
scalability feature of the platform.
With fully versioned references, this pattern of “just-in-time
synchronisation” for dependent references generalises to a
transactional model of change propagation with much broader
utility. Under this more general model, we allow dependent
references to disconnect for arbitrary periods of time. Reconnection
with a dependee f causes synchronisation with respect to the net
delta in f since the references were last connected, with connection
for the first time becoming just a special case of this. Since different
dependent references may have been disconnected at different points
in the history of f, this facility requires read access to all previous
versions of f, i.e. requires f to be at least partially persistent in the
sense of [2]. Domain/object references are actually fully persistent
in the sense of [7] and therefore are a fortiori capable of supporting
this paradigm.
Any business process, collaboration model or interaction model
which requires independent activity with well-defined
synchronisation points - such as shared document editors, team-
based software development environments and incremental parsers
as well as more traditional “business” applications such as an online
shopping - could be take advantage of this very general scheme.
The approach allows an application to choose any point on the

spectrum between full incrementality and explicit batch-mode
synchronisation and indeed to combine the two arbitrarily. The self-
similarity of the architecture means that the same transactional
mechanism could apply equally well to fine-grained concurrency
problems as to the larger-scale business-related examples just
mentioned. This is an important area for future research.

3.4 Bidirectionality
Bidirectionality – the ability to modify the output of a function and
have its inputs adjust accordingly, as well as the other way around –
is central to the ultimate vision for the platform and also critical to
its current intended use. Since bidirectionality, which is probably
best understood more generally as a requirement to support non-
deterministic computation, is fraught with both theoretical and
practical issues, and intersects with many interesting areas of
computer science research, it is likely to remain an active area of
investigation for many years. For now our goal is to enable
bidirectionality to an extent sufficient for our current purposes
without the introduction of excessive ad hocery. See section 7 for
some thoughts on future directions.
A simple example of bidirectionality is the filter() function which
selects only those elements of a list which satisfy a given predicate.
The result of a filter() can also be modified directly, causing its
argument to be modified in such a way that the definition of filter()
is satisfied.
When two references are connected via a mapping which does not
support bidirectionality, the target reference is effectively
immutable. That is to say, an attempt may be made to apply a
primitive action to that reference but the action will be rejected by
the mapping function. The action cannot be applied not because the
reference itself is immutable, but because the action cannot be
interpreted in terms of the source domain. Since one broken link
can undermine the bidirectionality of the containing expression, our
current support requires all primitive functions to define a sensible
backwards mapping. The general heuristic for backwards mapping
is “minimal change”. For example, for the backwards mapping for
the boolean functions and() and or(), we make a minimal number of
modifications to the inputs such that the desired output is obtained,
such as only setting one input to false if that is sufficient.
A compound function's inverse is simply the composition of the
inverse of its constituent functions. It should be obvious that even a
small amount of local indeterminacy rapidly amplifies into the
realms of the intractible on a global scale. There are a number of
complementary strategies we can use to manage this problem:
• lazy generation of alternatives (alternatives only materialised

when they are explored)
• support for hand-coded inverses for specific functions
• simple general-purpose heuristics
• allow user interaction, when possible
• prefer paths the user has visited previously
To understand how the backwards mapping of a compound function
might work, consider a simple example, the function size() for lists,
whose body is:

 if_(
 empty(list),
 integer(0),
 add(integer(1), size(tail(list)))
);

Assume that the input list contains a single element, and that we
want to set the size to zero, as in:

66

 Reference list = cons(character('a'), nil());
 Reference size = size(list);

 assert_(identical(size, integer(1)));
 set(size, integer(0));
 assert_(empty(list));

A suitable interpretation of setting the output of size() to zero is that
we are changing the output of the if() function from the “else”
branch to the “then” branch. A straightforward inverse mapping for
this is to modify the condition of the if() from false to true. This in
turn requires the backwards mapping for the empty() function. The
definition of empty() is simply:
 identical(list, nil());

So to make empty() true, we must change the output of identical()
from false to true. This inverse mapping can be relatively easily
achieved by simply setting the list argument to nil(). (Setting
identical() from true to false, by contrast, might be achieved by
setting one of the inputs to indeterminate.)
This example, although simple, suggests that bidirectional mappings
are perhaps achievable in practice with a well-chosen combination
of techniques, such as brute-force search and heuristic pruning,
while remaining intractable in a more theoretical sense.

One reason to take the bidirectionality requirement seriously in the
longer term is that today's applications are rich in behavioural
redundancies which are rarely noticed, let alone discussed, mainly
because they are obscured by complex notification schemes and
irregular language mechanisms. For example any application which
allows one object which is derived from another to be mutated in
such a way that changes eventually end up being “written back” to

the dependee object - a pattern common in user interfaces and
database applications - must generally duplicate some logic in order
to make the mapping bidirectional. And similarly, any application
which allows structures to be deconstructed as well as constructed
must contain redundancy to the extent that deconstruction is just
construction running in reverse. Domain/object's highly
systematised approach makes these redundancies much more
explicit and ultimately more amenable to elimination through
automation.

4. CASE STUDY: A “DOMAIN-DRIVEN”
DEVELOPMENT TOOL
Figure 3 below gives the overall flavour of the incremental approach
in the context of domain/j, a Java development tool where the user
interacts directly with a number of interconnected domain models
representing aspects of the Java language. Two distinct domain
models are shown, Java and JavaPhysical. Java is the abstract,
“logical” view of Java (consisting of entities such as packages,
types, methods, and so forth), whereas JavaPhysical is the more
concrete syntactic view, consisting of characters, syntax nodes such
as class and method declarations, source folders, and so forth. Each
is a separate domain in that it is closed under containment.
The diagram shows what happens as change occurring in the
JavaPhysical domain causes incremental update of the Java domain.
The JavaPhysical structure on the left shows part of a Java class
declaration, where each yellow box represents a Java syntax object
and each grey box represents the value of contains() for that object.
The Java structure on the right shows part of a Java class along with
some of the functions it participates in, including implements(),
which is the set of Java interfaces it implements.

Figure 3: Incremental synchronisation of domain models

67

The sequence of events is roughly as follows:
1. A “separator” object (representing a comma character, in this

case) is appended to the contains() list of the comma-separated
list of names in the class declaration's implements clause.

2. The mapping function which incrementally derives the
supertypes() set of the class does nothing in response to this
particular event.

3. A “name” object (whose referent happens to be the interface B)
is appended to the contains() list of the name list.

4. The mapping function responds to this action by adding the
referent of the newly-appended name to the implements() set of
the class.

This glosses many details. First, it is important to remember that all
the reactive structures involved change incrementally. Thus, when
the name is added to the name list, it appears empty at first and then
its immediate children are added recursively. The mapping must
therefore be capable of responding to the insertion of an empty
name, and also to the insertion of an individual identifier or “.” into
that name. (In Java a name is a period-delimited sequence of
identifiers [13].) Even when whole objects are moved, perhaps as
part of a cut-and-paste operation, the runtime decomposes the
operation into the incremental movement of sub-structure with the
mapping receiving and responding to each primitive action.
Although this is somewhat slower in a batch-mode style of
operation, it is optimal in interactive mode, which is the primary
mode of operation.
This example also glosses what actually happens inside the
mapping. In this case, the mapping code would look something like
this:
 implements = orderedSet(
 map(
 filter(
 nameList.contains,
 instanceOf(Name)
),
 referent
),
 simpleNameComparator
)

The various functions named here - orderedSet, map, filter,
instanceOf, referent and simpleNameComparator - are themselves
incremental and respond to individual atomic changes in their input
to produce the corresponding incremental change in their output.
The orderedSet function for example inserts a single element into a
list representing an ordered set in a position which respects the
ordering defined by the comparator. Structural induction guarantees
that the list elements are always correctly ordered. In a similar
fashion map incrementally responds to insertion of a new element
into its input list by applying its functional argument to it and
inserting the result into its output list. The incremental version of
map relates to the batch version of map by satisfying the following:
 current = mapbatch(list, f) �
 mapincremental(action, current, f) =
 mapbatch(apply(action, list), f)
where action is a primitive list operation (the insertion or removal of
an element).
In all cases the input and the output of these incremental functions
are references. One therefore can think of references as expressions
which have been “lifted” into a purely reactive evaluation scheme.
Bearing in mind that domain/object is implemented in Java, the
execution of the Java code equivalent to the above pseudo-code only

sets up the meta-level dependency structure between the references
qua sub-expressions. It does not do any actual application-level
computation. Computation is purely reactive, in response to a
change being initiated somewhere in the system, typically via user
input.
This domain/j example also sheds some light on the ultimate utility
of bidirectional interpretative mappings. In the context of the
relationship between the Java and JavaPhysical domains that we
have just seen, the inverse mapping – in this case the mapping from
Java to JavaPhysical – corresponds to the traditional notion of
“forward engineering”. The Java domain is more “abstract” than the
JavaPhysical domain to the extent that it contains less information.
Making the Java domain mutable with respect to JavaPhysical
therefore means making various lossy mappings invertible, by
adopting various strategies and techniques for restoring the lost
information. (The lost information in this case includes information
about particular syntactic forms used for various Java semantic
concepts, layout/whitespace information, etc.) These “range
restricting” strategies, whose job it is to make a non-deterministic
inverse deterministic, all amount to quality-of-implementation
decisions for particular mappings and are not intrinsic to the
domain/object platform itself. But the more support provided by the
runtime environment itself for bidirectionality, the easier it is for
domain implementors to provide high-quality, robust, customisable
inverse mappings. Some of these opportunities are discussed in
section 7.

5. EMBEDDING DOMAIN/OBJECT IN JAVA
The domain/object platform is implemented on top of the Java 5
platform and takes advantage of certain new language features in
Java 5 such as static import declarations and “vararg” argument lists.
Although these new features of Java are mainly syntactic sugar, they
make it somewhat easier to implement an embedded language.
Varargs in particular make it relatively easy to support partial
application and composition in a syntactically tidy fashion.

The Java 5 generic type system turned out to be impractical for our
purposes and so domain/object is currently untyped. Section 7
discusses some possibilities for using domain/object's own features
to augment the language with a modern type system like that of
Haskell.

The combination of varargs and static imports allow Lisp-like,
human-readable domain/object code to be embedded in a Java
program. The following shows the definitions of the two functions
which comprise a naive insertion sort:

sort (list, comparator):
if_(
 empty(list),
 nil(),
 insert(
 head(list),
 sort(tail(list), comparator),
 comparator
)
);

insert (object, list, comparator):
if_(
 empty(list),
 cons(object, nil()),
 if_(
 apply(comparator, object, head(list)),
 cons(object, list),
 cons(
 head(list),

68

 insert(object, tail(list), comparator)
)
)
);

Currently the above definitions require some supporting scaffolding
in the form of Java classes, although it is likely that these can be
eliminated with further effort.

One scalability issue still to resolve is avoiding stack overflow
during the demand-driven traversal of large recursively-defined
structures. Similar problems are faced by implementations of
languages such as Scheme on the Java virtual machine (e.g. Kawa
[4]). The solution will probably involve explicitly managing our
own stack in the Java heap.

Domain/object code can be interfaced to regular Java code via the
set()/get() methods on a reference and via standard notification
schemes along the lines of the Observer pattern [11].

6. RELATED WORK
The Mjølner system [22] and the Harmonia project, previously
known as Ensemble [17], were the original inspiration for our work
and perhaps explain why the first application to be delivered on the
domain/object platform is a fully incremental software development
tool. In emphasising simplicity and regularity over baroque
language features, the programming languages Self [33] and Beta
[26] contributed much of the philosophy.

There are several more recent influences too. We have adopted the
SDF2 meta-syntax, used on the Stratego program transformation
project [31] for the purpose of defining syntactic domains.
Squeak's [19] meta-circular user interface and “horizontal
inheritance” paradigm is similar in several ways to domain/object.
Most recently, Subtext [10], as has already been mentioned, shows
some striking similarities to domain/object, particularly in its
reactive model of computation and its elimination of the distinction
between runtime and compile-time. Subtext has also suggested
some interesting avenues for future research.

There is a large body of related work in the literature of visual
programming languages (e.g., [32]) and dataflow languages such as
Lucid [34], which have not been a direct influence, although there is
considerable common ground. Forms/3 [5] is a declarative,
spreadsheet-based visual programming language. The developer
directly places cells on a form, and defines formulae relating cells to
other cells via a graphical user interface. The Form/3 notion of
“time travel” [3] closely corresponds to domain/object's versioned
runtime.

SCIL-VP [23] is a visual programming language which allows
users to combine arbitrary high-level functions into a dataflow
graph, which can be visualised for debugging and optimisation.

Lucid [34] was initially developed as a language in which it would
be straightforward to prove assertions about programs. Lucid is a
non-imperative dataflow language; computation is precipitated by
eduction, which is simply demand-driven dataflow. Under this
model, when the value of an object is requested, then if it is
available in a cache it is returned; otherwise it is computed thorough
other means, recursively applying the same pattern. In
domain/object the mechanism for eduction is the demand-driven
means by which values are calculated, and the memoisation table
plays the role of a cache.

7. FUTURE DIRECTIONS
7.1 Types and abstract interpretation
One exciting possibility is how a type system might be integrated
into domain/object. In eliminating the distinction between compile-
time and runtime, domain/object might ironically lend itself better to
a powerful type system, if we understand a type system as an
abstract interpretation [9] and consider that abstract interpretation
itself is a perspective on program analysis where “static” analysis
and the detection of “actual” runtime conditions lie on a continuum.

In a research context, the approximation of runtime behaviour
comprising the type system being experimented with would be a
reactive structure that was updated live as the researcher tweaked the
definition of the type system. The distinction between test
assertions, aspects and type systems would eventually blur away
with the freedom for any particular query of the runtime structure of
the program to migrate between a live query in the form of an
aspect, an application-level test, or a hard language constraint in the
form of a component of a type system.

7.2 Relational programming
As discussed in section 3.4, the domain/object requirement to
support bidirectional functions makes explicit a degree of
redundancy which is usually hidden in today's applications and
languages. For example, for some query or view derived from a list,
the remove mapping is generally the inverse of the insert mapping,
yet this usually needs to be implemented manually. The reason is
simply that the remove mapping is non-deterministic if the insert
mapping is lossy. For exactly the same reason, the reverse mapping
required to make a query or view mutable must also usually be
hand-coded. Consider for example the filter() example mentioned
earlier whose inverse is non-deterministic with respect to the
insertion point in the underlying list.

The ultimate problem here is that the inverse of a function is itself
only a function if the original function is bijective, i.e. 1-1, and
defined for every member of its range. Otherwise the inverse is a
relation or at best a partial function. This suggests that a possible
future development for domain/object would be the incorporation of
some techniques from the relational programming field. Relational
programming is a marriage of functional programming and logic
programming which explicitly supports non-determinism in the
form of choice and cut operators. A relational runtime for
domain/object could exploit this non-determinism to allow for
example the remove mapping for a list to be simply the insert
mapping running backwards, even if the insert mapping was lossy.
A deterministic result could be obtained by range-restricting the
inverse using some of the techniques mentioned in section 3.4, such
as default user preferences or explicit user interaction.

7.2 Modal logic
There is a potentially interesting relationship between the relational
programming model, modal logic, and domain/object's versioned
runtime. In their “primary” (forward) direction, domain/object
functions are genuine functions: they are always left-univalent, i.e.
uniquely defined for a given set of inputs. One way of thinking
about bidirectionality is to imagine that applying the inverse of a
function only injects one possibility of the (non-deterministic)
inverse into the “current” version, placing all alternatives of the
inverse mapping into alternate versions. It would be natural then to
think in terms of a “possible worlds” semantics [22], and say that
the user inhabits a single actual world at any point in time, and
computation is the traversing a path through the space of possible
worlds. The significance of this, if any, is far from clear.

69

7.3 Pattern matching
The algebraic nature of domain/object structures suggests a natural
fit with the decompositional, pattern-matching style common in
functional programming languages. Structural pattern matching - of
the incremental kind - will therefore probably be part of any
eventual higher-level language for expressing domain/object
functions.

7.4 Concurrency
Finally, dataflow languages naturally lend themselves to
concurrency, but we have largely dodged this important topic until
now. The following very simple example illustrates the kind of
issue we currently face. Given:
 c = true();
 b = not(c);
 d = or(c,b);

The reference graph for the example is shown in Figure 4 below.
Assume that we now wish to set c to false. Clearly we should not
observe any change in the value of d; it should always appear false
to an observer external to the system. This can only be achieved if it
is not possible to observe any values in the system until the initial
action (setting c to false) is complete in the sense that all dependent
values are updated.

When c is set to false, notification is sent along two edges to or(c,b),
which becomes false, and not(c), which becomes true. If change
then propagates from or(c,b) to d before it propagates from not(c) to
b and thence to or(c,b), then d will temporarily become false. This
interim state of d arises because it does not see its inputs change
atomically from (false, true) to (true, false), but instead sees (false,
true), (false, false), (true, false). The observability of the interim
state is problematic if for example it is associated with an assertion
which will fail immediately should false be observed as a value of d.

Domain/object's transaction support and versioned runtime will
probably play central roles in the platform's future treatment of
concurrency. Dataflow languages arose from research into
concurrent computing [35], and our future efforts will no doubt
leverage the substantial research already undertaken in this area.

8. CONCLUSION
The “integration of disparate systems” is the number one priority
facing internet-centric businesses today, according to IBM [20]. Yet
as an industry we have spent precious little time understanding how
to make software really connect. While much remains to be done,
domain/object represents an important move in the direction of truly
semantic computing.

9. REFERENCES
[1] Acar, U., Blelloch, G. and Harper, R. (2002). Adaptive

Functional Programming. POPL '02.
[2] Acar, U., Blelloch, G. and Harper, R. (2004). Adaptive

memoisation. Carnegie Mellon Technical Report.
[3] Atwood, J., Burnett, M., Walpole, R., Wilcox E. and Yang, S.

Steering Programs via Time Travel. (1996). In IEEE
Symposium of VIsual Languages, Boulder, Colarado USA.

[4] Bothner, P. (2003). Kawa, the Java-based Scheme system.
http://www.gnu.org/software/kawa/.

[5] Burnett, M., Atwood, J., Djang, R., Gottfried, H., Reichwein, J.
and Yang, S. (2001). Forms/3: A First-Order Visual
Language to Explore the Boundaries of the Spreadsheet
Paradigm. In Journal of Functional Programming 11(2), pp.
155-206.

[9] Cousot, P. Types as Abstract Interpretations. (1997). In
Conference Record of the 24th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Programming
Languages, pp. 316-33. ACM Press, New York.

[6] Czarnecki, K., and Eisenecker, U. (2000). Generative
Programming - Methods, Tools, and Applications. Addison-
Wesley.

[7] Driscoll, J. R., Sarnak, N., Sleator, D. D. and Tarjan, R. E.
(1989). Making Data Structures Persistent. In Journal of
Computer and System Sciences, vol. 38, no. 1. Academic
Press.

[8] Edwards, J. (2005). Structure-Oriented Programming.
http://alarmingdevelopment.org/index.php?p=9.

[10] Edwards, J. (2005). Subtext: Uncovering the Simplicity of
Programming. OOPSLA 2005 (forthcoming).

[11] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995).
Design Patterns. Addison-Wesley.

[12] Giraud-Carrier, C. (1994). A Reconfigurable Data Flow
Machine for Implementing Functional Programming
Languages. In ACM Sigplan Notices, vol. 29, no. 9.

[13] Gosling, J., Joy, W., Steele. G. and Bracha, G. (2005). The
Java Language Specification (3rd Edition). Addison-
Wesley Professional.

[14] Graham, P. (1993). On Lisp. Prentice Hall, New Jersey.
[15] Gurd, J. R., Kirkham, C. C. and Watson, I. (1985). The

Manchester Prototype Dataflow Computer. In
Communications of the ACM, vol. 28, no. 1. Association for
Computing Machinery.

[16] Harel D. and Pnueli A. (1985). On the Development of
Reactive Systems. NATO ASI Series F, vol. 13. Springer-
Verlag.

[17] Harmonia Research Project. http://harmonia.cs.berkeley.
edu/harmonia/index.html.

[18] Hughes, J. Lazy memo-functions. (1985). In Jouannaud, J.
(ed), Functional Programming Languages and Computer
Architecture, no. 201 in Lecture Notes in Computer Science,
pp. 129-146. Springer-Verlag.

[19] Ingalls, D., Kaehler, T., Maloney, J., Wallace, S. and Kay,
Alan. (1997). Back to the future: the story of Squeak, a
practical Smalltalk written in itself. In Proceedings of the

Figure 4: Setting c to false should not cause a change in
the observed value of d

70

12th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications.
Association for Computing Machinery, New York.

[20] Karpinski, R. (2002). IBM's New Tools Complete Web
Services Plunge. Infoweek.

[21] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes,
C., Loingtier, J. and Irwin, J. (1997). Aspect-oriented
programming. In Akşit, M. and Matsuoka, S. (eds), ECOOP
'97 --- Object-Oriented Programming 11th European
Conference, vol. 1241, pp. 220-242. Springer-Verlag.

[22] Knudsen, J. L., Madsen, O. L., Magnusson B. and Lofgren M.
(1993). Object-Oriented Software Development
Environments: Mjølner Approach. Prentice-Hall.

[23] Koelma, D., van Balen, R. and Smeulders, A. (1992). SCIL-
VP: a multi-purpose visual programming environment. In
Proceedings of the 1992 ACM/SIGAPP symposium on Applied
computing: technological challenges of the 1990's, pp. 1188-
1109.

[24] Kripke, S. Naming and Necessity. (1980). Harvard University
Press.

[25] Liu, Y. A. (1999). Efficient Computation via Incremental
Computation. Pacific-Asia Conference on Knowledge
Discovery and Data Mining.

[26] Madsen, O. L., Moeller-Pedersen, B. and Nygaard K. (1993).
Object-Oriented Programming in the BETA Language.
Addison-Wesley.

[27] Michie, D. (1968). “Memo” functions and Machine
Learning. Nature, vol. 218.

[28] Object Management Group. (2001). Unified Modelling
Language, v1.5. http://www.omg. org/cgi-
bin/doc?formal/03-03-01. Object Management Group, Inc.,
Needham, Massachussetts.

[29] Rapaport, W. J. (1999). Implementation is Semantic
Interpretation. In The Monist, no. 82.

[30] Simonyi, C. (1995). The Death of Computer Languages, the
Birth of Intentional Programming, The Future of Software.
University of Newcastle-upon-Tyne, England, Department of
Computing Science.

[31] Stratego: Strategies for Program Transformation.
http://www.program-transformation.org/Stratego/WebHome.

[32] Tanimoto, S. L. (1990). VIVA: A Visual Language for
Image Processing. In Journal of Visual Languages and
Computing, vol. 1, issue 2.

[33] Ungar, D. and Smith, R. B. (1987). Self: The Power of
Simplicity. In SIGPLAN Notices, Vol. 22, No. 12.
Association for Computing Machinery, New York.

[34] Wadge, W. W. and Ashcroft, A. (1985). Lucid, the Dataflow
Programming Language. Academic Press.

[35] Whiting, P. and Pascoe, R. (1994). A History of Data-Flow
Languages. In IEEE Annals of the History of Computing,
volume: 16, Issue 4, pp. 38-59.

[36] Zhanyong W. and Hudak P. (2000). Functional reactive
programming from first principles. In Proceedings of the
ACM SIGPLAN 2000 conference on Programming language
design and implementation, pp. 242-252.

71

