
Refactoring: To the Rubicon… and Beyond!
Roly Perera
Ergnosis Ltd

Third Floor, 14 King Square
Bristol, BS2 8JJ, UK
+44 (0)117 924 8915

roly.perera@ergnosis.com

ABSTRACT
We demonstrate a new approach to refactoring which involves the
decomposition of familiar high-level refactorings such as Extract
method into their components. By understanding all refactorings
as the introduction or elimination of degrees of freedom we show
how a large proportion of programming edits are in fact micro-
refactorings, and gain an insight into how tools that support these
micro-refactorings could have a dramatic impact on developer
productivity.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance and
Enhancement – Restructuring, reverse engineering, and
reengineering.

General Terms
Design, Languages

Keywords
Refactoring

1. BACKGROUND
A significant portion of a software developer's time is spent
refactoring: preparing for the insertion of new functionality, and
consolidating existing functionality, without changing the current
behaviour of the system. Without this ongoing maintenance
effort, entropy rapidly takes hold and delivering further features or
bug-fixes becomes difficult.

Interest in software refactoring and tools for assisting with this
activity has been growing steadily over the last decade, thanks to
the influential efforts of Roberts and Brant[3], Opdyke[2],
Fowler[1] and others. However the refactorings discussed to date,
such as Extract method, are in desperate need of decomposition
into more primitive, but more widely applicable refactorings, such
as Push code into method. By identifying a kernel of micro-
refactoring primitives we gain new insights into the opportunities
for tools to change the way developers work.

2. A MICRO-REFACTORING KERNEL
The following Java examples show how a macro-refactoring like
Extract method can be decomposed into its parts. Refactoring in a
language like Java is a hard problem, thanks to the ubiquitous
side-effect. Although most refactoring tools for such languages

are in a convenient state of denial, requiring the user to be on the
lookout for unintended changes in behaviour due to the
reordering, duplication or elimination of side-effects, we believe
this simply represents the relative immaturity of refactoring tools
compared to other transformation tools that need to preserve
behaviour, such as optimizing compilers. For the purposes of our
current demonstration we will reluctantly join the denial camp.

Our first example is based on Fowler's Hide delegate refactoring
[1]. As a manual activity, this is bread and butter to any
experienced OO programmer. Yet no tool supports this important
refactoring, not because it is hard to implement, but because it
cannot be applied as a single transformation without the explicit
selection of an actor for each role: client, server and delegate. If
however Hide delegate is broken down into constituent
operations, each of which can be applied directly without
requiring complicated decisions to be made in advance, then the
developer can achieve Hide delegate without having to specify all
arguments up front. In effect, she composes an instance of Hide
delegate by stepwise interaction with her source code, obtaining
confidence-building feedback at each step.

The following code is adapted from Fowler, p. 158-9:

class Person {
 private Department _dept;

 public Department getDepartment () {
 return _dept;
 }

 public void setDepartment (Department dept) {
 _dept = dept;
 }
}

class Department {
 private Person _manager;
}
 public Department (Person manager) {
 _manager = manager;
 }

 public Person get Manager () {
 return _manager;
 }
}

To obtain a person's manager, the following client code is used:

manager = john.getDepartment().getManager()

If client code becomes riddled with traversals of the path from
person to manager, then the case for centralizing this traversal in
one place becomes fairly strong. The first step is a natural one:
select the code which navigates the path:

manager = john.getDepartment().getManager()

Copyright is held by the author/owner(s).
OOPSLA’04, Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

and apply Extract method. This creates a new method, in the
client class, which is static as it uses no members of its host class:

class Client {
 public static Manager (final Person person) {
 return person.getDepartment().getManager();
 }

 public void fireJohn () {
 final Person john = ...;
 final Manager manager;
 manager = getManager(john);
 // ... tell John’s manager the news
 }
}

At this point the developer may notice that other clients use a
similar query and decide that it therefore more properly belongs
on the Person class itself. She can achieve this by simply
selecting the argument whose type is to become the host class of
the query:

manager = getManager(john)

and applying Push method into parameter type. The client-side
transformation is intuitive:

manager = john.getManager()

and the getManager() method is now where it belongs (and as one
would expect, no longer static):

class Person {
 // ...

 public Manager getManager () {
 return getDepartment().getManager();
 }
}

The benefits of decomposing Hide delegate and similar
refactorings in this way are significant. The user does not need to
have memorized a large repertoire of macroscopic refactorings
such as Hide Delegate. Nor need she hold a complicated
conversation with her tool before the activity starts. Instead she
can decide how to proceed at each step, perhaps even exploring an
entirely different refactoring which only suggests itself halfway
through the process. Finally, she has a new primitive at her
disposal, Push method into parameter type, which can be used in
a variety of common situations, not just on methods which have
been freshly extracted as part of Hide delegate.

Things get even more interesting when we carry out a similar
decomposition of well-known "primitives" such as Extract
method. A set of even more primitive and general operations
emerges. Again we take an example from Fowler, this time
Extract method (p. 114):

void printOwing {
 Enumeration e = _orders.elements();
 double outstanding;
 while (e.hasMoreElements()) {
 Order each = (Order) e.nextElement();
 outstanding += each.getAmount();
 }

 printDetails(outstanding);
}

The developer wishes to extract the calculation of outstanding
(shown selected above) to a new method so that it can be used
elsewhere:

void printOwing {
 double outstanding = getOutstanding();
 printDetails(outstanding);
}

double getOutstanding () {
 Enumeration e = _orders.elements();
 double outstanding;
 while (e.hasMoreElements()) {
 Order each = (Order) e.nextElement();
 outstanding += each.getAmount();
 }
 return outstanding;
}

Now imagine the developer wishes to generalize the
getOutstanding() method further, so that it is not coupled to the
current instance, and furthermore works with any enumeration of
orders. His first step is to Make method static (roughly the
inverse of Push method into parameter type):

static double getOutstanding (final Vector orders) {
 Enumeration e = orders.elements();
 double outstanding;
 // ...
}

Finally, he selects the call which obtains the elements of the
vector:

 Enumeration e = orders.elements();

and applies Push code out of method, effectively replacing the
vector parameter by an enumeration:

static double getOutstanding (final Enumeration e) {
 double outstanding;
 // ...
}

and forcing each call site to wrap its vector argument in a query
for its elements:

void printOwing {
 double outstanding =
 getOutstanding(_orders.elements());
 printDetails(outstanding);
}

Rather than having to re-inline the entire method and start again,
the developer was simply able to inline that part of the method
which he didn’t want to be shared. We hope to demonstrate that a
tool based on these principles gives developers power editing
features with no loss of control.

3. REFERENCES
[1] Fowler, M. Refactoring

Addison-Wesley, Reading, MA, 1999.

[2] Opdyke, W. Refactoring Object-Oriented Framework
PhD. Thesis, University of Urbana-Champaign, 1992.

[3] Roberts, D., Brant, J., and Johnson, R. A Refactoring Tool
for Smalltalk
Theory and Practice of Object Systems archive, 3, 4 (1997),
253-263

