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Abstract

Traditional programming languages are algorithmic: they are best suited to writing programs that acquire
all their inputs before executing and only produce a result on termination. By contrast most applications
are interactive: they maintain ongoing interactions with their environments. Modern systems address this
incompatibility by manually extending the execution model of the host language to support interaction,
usually by embedding an event-driven state management scheme which executes fragments of imperative
code in response to interactions, the job of each executed fragment being to restore the internal consistency
of the computation. The downside of this approach to interaction is that it relies heavily on mutable stores
and side-effects and mixes application logic in with behaviour which is more properly the responsibility
of an execution model. I describe a programming model called declarative interaction which supports
interaction directly. The distinguishing feature of the model is its modal construal of state and interaction.
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1 Declarative Interaction

Almost all software systems today are interactive, in that they maintain ongoing
interactions with their environments, rather than simply producing a result on ter-
mination [19]. Indeed, a consistent trend since the beginning of the digital era has
been towards increasingly interactive systems. The trend has progressed on at least
two fronts: enhancements to end-user interactivity, and increasingly integrated sys-
tems. The trend began with the first teletype and textual interfaces and continued
through early GUIs and LAN-based operating systems. It continues with today’s
3D virtual worlds and applications deployed over the wide-area network.

With the Internet now emerging as the “global operating system”, the pressure
on our software to be interactive is greater than ever before. Consider how the
following requirements can be understood in terms of enhanced interactivity:
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• Ability to reconfigure or repair applications without taking them offline → inter-
action with code as well as data

• Long-running, continously-available applications → interaction must be robust
• Sessions resumable from wherever we happen to be located → persistence of

interactions
• Transparent recovery from latency problems and intermittent connectivity →

interaction should not be semantically sensitive to the network
• Mobile code whose behaviour depends on execution context→ dynamically scoped

interactions

A variety of process algebras and other formalisms have been developed for
modelling and reasoning about interactive systems. Yet despite the trend towards
greater interactivity, we continue to lack a simple and coherent paradigm for build-
ing robust interactive systems. The main obstacle has been what we might charac-
terise as an “impedance mismatch” between traditional algorithmic programming
languages, and the way interactive systems abstractly work. Whereas an algorith-
mic language treats a program as a black box which produces a final value on
termination, an interactive system allows other systems to observe and influence
its behaviour as it executes, and must adjust its internal state in response to each
interaction to maintain the consistency of the computation.

In current desktop systems, the mismatch is usually resolved by an implemen-
tational strategy I shall call state patching : representing the state of the system as
a set of mutable stores and then employing a notification scheme to maintain the
consistency of the state. Rather than the host language being used to execute a
single sequential program to termination, it is employed to execute fragments of im-
perative code as interactions occur. Each executed fragment must produce exactly
the side-effects required to synchronise the state of the system correctly.

Unfortunately this near-universal reliance on the imperative to support interac-
tion has come at an enormous cost in complexity and reliability. It will be useful
here to recall Brooks’ distinction between essential and accidental (or inessential)
complexity [6]. Complexity inherent in the problem itself (from a user’s perspec-
tive), or which can be attributed to human factors, is essential; what remains is
accidental or inessential. Interactive systems as currently implemented are domi-
nated by inessential complexity, the main culprits being this ad hoc management of
state, explicit concern with flow of control, and unnecessary use of non-deterministic
concurrency [28]. Imperative languages [ab]used in this way are the “Turing tar-pit
in which everything is possible but nothing of interest is easy” [33]. Web appli-
cations only complicate things further, by adding a variety of ill-defined staging
policies and interaction models into the mix. 2

Ironically, what unifies much of this inessential imperative complexity is that it
exists in the service of essentially declarative ends. A key claim I will be making
in this paper is that the reason the current paradigm works at all is that systems
implemented in this way approximate a much simpler, declarative model of inter-

2 Several projects, such as Links [10], aim to address this impedance mismatch specifically for Web appli-
cations.
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active computation. Experienced software designers rely tacitly on something like
this declarative model in order to make decisions about what counts as reasonable
behaviour. Indeed, rather than being ill-suited to interaction, as is sometimes as-
sumed, perhaps because of the somewhat arcane feel of techniques such as monads
[24] for modelling effectful computation, the declarative paradigm – with a sim-
ple orthogonal extension to support interactivity – fits the abstract behaviour of
interactive, stateful systems surprisingly well. But today, because this declarative
behaviour is achieved only indirectly, interactive systems are significantly less reli-
able and harder to reason about than they need to be, despite the widespread use
of design patterns such as Observer [18] to manage some of the inessential complex-
ity. State-related dysfunctions in particular, such as the gradual degradation of a
system over time, spurious sensitivities to the order in which two operations take
place, deadlocks and race conditions, are common.

I propose therefore that the best way to address the impedance mismatch be-
tween algorithmic languages and interactive systems is not to wallow in the tar-
pit of imperative languages, but to lift declarative languages into a computational
model which supports interaction directly. The aim of this paper is to set out the
conceptual foundations of such a model, which I shall refer to as the declarative
interaction model. No new results are presented; instead the paper attempts to
provide the philosophical framework and motivation for further research. Future
work will formalise various aspects of the model.

Like some other declarative approaches to interaction, the proposed model main-
tains a clean separation of (stateless, deterministic) declarative computation and
(stateful, non-deterministic) reactive computation. The model is distinguished by
its modal construal of interaction, whereby an interactive system is taken to be a
space of canonically represented “possible worlds”, each expressing a purely declara-
tive computation, along with an index into that space indicating the “actual world”,
which represents the system’s current state. To interact with such a system is to
select a new actual state from this space of possible states. Interactions (effect-
ful operations) are lifted to meta-programs that manipulate values of modal type;
crucially, they are unable to interfere with the purely declarative semantics of each
possible state, and in any case are only required when they are essential to applica-
tion logic. Non-determinism arises from concurrent interactions, which are handled
transactionally.

The declarative interaction model relates to many active research areas, includ-
ing modal calculi, incremental computation, meta-programming, declarative con-
currency, transactional concurrency, dataflow computing, interactive computing,
and wide-area computing. As we shall see, four closely related concepts in particu-
lar are central to the model: modality (§2), incrementality (§3), concurrency (§4),
and persistence (§5). Although envisaged as a multi-paradigm framework within
which to study various aspects of interactive programming, rather than a single
programming language, a key validation of the model will be the development of
an interactive programming language (§6) which supports the model directly.
Such languages will make it possible to build software systems which are inherently
interactive.
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2 Modality

The central feature of the declarative interaction model is its modal interpretation of
state and interaction: it construes states as possible worlds and interaction as navi-
gation between possible worlds. The key idea is to identify the state of an interactive
computation (once it has finished responding to an external event) with what we
shall call an unfolded declarative computation: a function which has been evaluated
at some argument and which retains the values of intermediate computations.

The following example illustrates the idea of unfolding in a simple call-by-
keyword language based on object calculus [1]. Intermediate values are indicated
by → v; for brevity, not all are shown. We start with the computation factorial(1):

fact(n: 1)
Unfolding turns this into:

fact(
n: 1,
ret: if(cond: =(x: n, y: 0) → false, then: 1, else: *(x: n, y: fact(

n’: -(x: n, y: 1) → 0,
ret: if(cond: =(x: n’, y: 0) → true, then: 1, else: *(x: n’, y: fact(

n’’: -(x: n’, y: 1)
))) → 1

))) → 1
) → 1

One way to visualise an unfolded computation is to consider execution as a process
more akin to (hygenic) macro-expansion than to reduction. Reduction discards in-
termediate terms, whereas unfolding integrates them into a unified static structure.
Recursive calls expand into nested structure, with laziness allowing the unfolded
structure to remain finite. (Grey text above indicates arguments which are un-
needed.)

The other crucial feature of the model is to construe interaction with the system
– by which we just mean changing its state – as navigation to a nearby variant of the
declarative computation which represents its state. For example changing the value
of the argument to factorial from 1 to 2 selects the following unfolded computation:

fact(
n: 2,
ret: if(cond: =(x: n, y: 0) → false, then: 1, else: *(x: n, y: fact(

n’: -(x: n, y: 1) → 1,
ret: if(cond: =(x: n’, y: 0) → false, then: 1, else: *(x: n’, y: fact(

n’’: -(x: n’, y: 1) → 0,
ret: if(cond: =(x: n’’, y: 0) → true, then: 1, else: *(x: n’’, y: fact(

n’’’: -(x: n’’, y: 1)
))) → 1

))) → 1
))) → 1

) → 2
4
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Whereas unfolding proceeds top-down (when a computation is visited for the first
time), navigation proceeds bottom-up, propagating a change through the system
until a new idle state is reached. Navigation may cause previously unvisited regions
to be unfolded along the way.

The significance of each state encoding the full execution history, rather than
just the computed result, is that most interactions navigate between nearby states,
and intermediate results can therefore often be shared, allowing systems to respond
incrementally to input changes, rather than having to recompute each time ab initio
(from scratch). In the factorial case, for example, the unfolding of factorial(2) in-
cludes the unfolding of factorial(1) as a sub-structure. This of course concords with
the way real systems behave; indeed the requirement that they respond efficiently
like this is most likely one of the main factors behind our continued reliance on the
state patching approach. Incrementality is discussed further in §3.

I shall now argue that most interactive systems can be understood as abstractly
realising the model just described. We shall consider two kinds of interaction. The
first is well known to have a declarative construal, but is only able to describe
certain kinds of system whose interactive behaviour is limited in an important way.
The second is general enough to be able to describe most interactive applications.

The first kind of interaction is typified by the act of typing a single word into a
word processor by simply typing the individual letters which make up the word, in
the correct order – such as entering the word “at” by first pressing the a key, and
then the t key. What is significant here is that the first-order state of the system
evolves as a monotonic function of the interaction history. (By “first-order” state,
I mean to exclude the kind of information which might for example be stored in an
“undo” history.) Monotonicity means that new interactions are never interpreted
as the undoing or replacement of earlier actions.

If the system’s state grows monotonically, then it can be given a straightforward
declarative interpretation. In effect we can think of the system as stateless over
the entire input sequence – despite its having something of a stateful “feel”, in
as much as inputs are provided and the system responds. Abstractly this is so,
even though such a system would today probably be implemented using mutable
stores, non-deterministic concurrency and explicit synchronisation. This simple
kind of interaction, and its declarative interpretation, is well-known as the basis of
the dataflow model of declarative concurrency [9], and can be used, for example, to
implement a simple stream-based producer-consumer style interactive system purely
declaratively. The interactive nature of the system is really just a property of the
execution model, which allows the computation to proceed in a stepwise fashion,
before the entire input is fully known, and intermediate states of the computation
to be observed. These intermediate states of the system are sometimes known as
partial terminations [36].

The class of interactions we have considered so far is rather trivial, being re-
stricted to just those for which the state of the system evolves monotonically. To
describe the richness of interactive systems in general, we need to allow retroactive
modification, rather than just monotonic growth, of the first-order state. Here, the
system is able to interpret new interactions as the deletion or insertion of actions at
(up to consistency constraints) arbitrary positions in the canonical sequence repre-
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senting the first-order state. The effect of such an edit is that of undoing back to
the point of modification, deleting or inserting actions as required, and then redoing
all the undone actions.

The idea in effect is to treat an interactive system as what is sometimes called
a retroactive data structure [14]. A retroactive data structure is similar to a fully
persistent data structure, a mutable data structure which provide access to, and
modification of, any version (state) of the structure [15]. Whereas modification of
a prior version of a fully persistent data structure always creates a new branch of
history, retroactive data structures allow alternate histories to be created for the
current version through the insertion or deletion of past actions, such edits being
construed modally as sideways steps into nearby states. Retroactive data structures
are closely related to dynamisation and adaptive computations; for example no
general technique exists for turning any data structure into an efficiently retroactive
counterpart.

The significance of this more general kind of interaction is that systems typ-
ically have both invertible (undoable) and commutative operations, in particular
when their first-order state can be partitioned into orthogonal components. Under
such circumstances there are multiple interaction sequences that lead to the same
first-order state. Returning to our word processing example, consider the various
sequences of key presses that can result in the insertion of the word “at” (leaving
the caret just to the right of the t):

〈a, t〉 a at

〈t, leftArrow, a, rightArrow〉 t t at at

〈i, backspace, a, t〉 i a at

〈a, t, t, ctrl-Z〉 a at att at

Each of these interaction sequences must produce the same first-order state.
But unless its state can be retroactively modified, the system cannot maintain a
canonical representation of that state when invertible operations are undone or com-
mutative operations are re-ordered. Manually implemented state patching provides
no guarantee that the desired state is reliably reachable at all.

The power of the modal construal of state is that it allows the system to retain
a declarative interpretation even in the face of this kind of non-monotonic state
evolution. A retroactive modification is interpreted as a sideways step into a coun-
terfactual state of affairs or possible world where a different canonical sequence of
actions obtains, namely the nearest one which accommodates the required modi-
fication. The new state is identical with the one which would have resulted had
the interaction sequence simply been different in the first place, and the declarative
purity of individual states remains isolated from the interactions which navigate
between states. And of course retroactive edits actually include the first kind of
interaction as a subcase, since monotonically extending the input is just one way of
arbitrarily editing it.

6



Perera

This simple idea of interaction as the exploration of an algebra of unfolded com-
putations seems to be generic enough to subsume most familiar kinds of interaction.
Suppose that our word processor underlines misspelled words in red. We can think
of this feature as involving the computation of (among other things) a function
which selects, from a particular sequence of words, the misspelled words. When the
user types a new word, or edits an existing one, the system is switched to a new
state where it is selecting the misspelled words of a slightly different sequence of
words. When instead the user enters a new word into the dictionary, the system
is switched to a new state where it is selecting the misspelled words of the same
sequence of words, but now with a slightly different notion of “misspelled”.

This separation of interaction from purely declarative computation can be
thought of as the lifting of interaction into an earlier stage of the computation.
Interactions are, in effect, meta-programs which treat declarative computations as
data. A key consequence of this staging is non-interference: it is not possible to infer
the precise history of interactions from the first-order state, since it only represents
their net effect. This is a strong desirable for many security-sensitive applications
[21].

A close affinity between interaction, meta-programming and modality is also
suggested by recent work in modal calculi. Modal languages, which were first stud-
ied in relation to staged computation [13], can, like monads, be used to capture
properties of the interactions a computation has with its environment. They typi-
cally feature two type constructors that correspond to the necessity and possibility
operators of modal logic. The constructor 2 (box) is a universal quantifier: 2A

holds in the current world iff A is necessary, i.e. holds in all the worlds. The con-
structor 3 (diamond) is an existential quantifier: 3A holds in the current world iff
A is possible, i.e. holds in some world. The relation to meta-programming is that
the substitution of code into a syntactic context corresponds to interaction with
an environment, with the syntactic context as the environment, and the capture
of free variables as the interaction [29]. A computation with precondition P can
be assigned a bounded universal type 2P A, indicating that it can execute in all
states satisfying P (in all contexts in which the name bindings described by P are
available). Dually, a computation with postcondition Q can be assigned a bounded
existential type 3QA, indicating that it yields some state satisfying Q (some con-
text in which the name bindings described by Q are introduced). Although closely
related to monads [25], modal types are able to classify certain kinds of interaction
more precisely [30], and will therefore probably provide a suitable type-theoretic
foundation for the proposed model.

3 Incrementality

The job of an interactive system is to reflect a consistent interpretation of the
interaction history at all times. This emphasis on maintenance of an interpreta-
tion, rather than computation of a final value, suggests that we think of interactive
computations as inherently incremental. Rather than running from the beginning
through to termination to produce a final result, such systems move between partial
terminations representing their interpretation of particular interaction sequences.
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We can legitimately describe this behaviour as incremental because – abstractly at
any rate – the system merely adjusts its state, rather than re-computing it ab initio.

Concretely of course things are not so simple. As we have seen, modern inter-
active systems realise this kind of abstractly incremental behaviour by utilising a
complex state patching scheme to synchronise the internals of the computation, usu-
ally only updating a small subset of concrete state, rather than refreshing the entire
system ab initio. But such manual schemes, which are reliant on mutable stores
and side-effects, are major sources of complexity and programmer error. Care must
be taken to patch the state correctly, and, when the effect is intended to have some
kind of dynamic extent, to restore the previous state afterwards. Crucially, essential
application logic is lost in the morass of state-management machinery.

This points to the real problem with the state patching approach: its reliance on
imperative code to achieve manually what could actually be managed automatically
by an incremental execution model which directly supported interaction. And just
such a model is suggested by the modal view of interaction outlined in the previous
section, where the states of interactive systems are construed as unfolded declara-
tive computations, and interaction (mutation of state) as navigation between these
computations. When interactions navigate between “nearby” states, many sub-
computations of those states can clearly be shared. The execution model therefore
need only evaluate those parts of the new state which are not shared with the old.

Utilising such an execution model directly frees us of the need to write the
state management code. Interaction causes the state of the computation to adjust
automatically in the manner of a dataflow computation or spreadsheet. Perhaps
most significantly, we can write programs directly in a declarative style, and rely
on the runtime to provide interactivity.

The problem of efficiently adjusting a computation to input changes presents
several challenges, and has been studied extensively. One of the more interesting
recent efforts, due to Acar, Blelloch and Harper, is so-called self-adjusting computa-
tion [3], which combines two techniques: function caching or memoisation [27], and
change propagation based on dynamic dependence graphs, a development also due
to Acar et al [2]. Self-adjusting computation is interesting because both memoisa-
tion and change propagation align closely with our modal notion of incrementality.
Memoisation corresponds to the persistence, across changes, of declarative compu-
tations, allowing the parts of a computation which are unaffected by a change to
be re-used. Change propagation is the dual concept, corresponding to navigation
between those declarative computations, causing those parts of the computation
which are affected by a change to be evaluated. Memoisation is “top-down” and
handles “shallow” interactions well; change propagation is “bottom-up” and han-
dles “deep” interactions well. Combined correctly they can handle both shallow
and deep changes efficiently. The main shortcoming of self-adjusting computation
is that it falls short of being a purely run-time transformation; non-trivial effort on
the part of the programmer is required to transform a standard declarative program
into a self-adjusting program. Strict and non-strict arguments, for example, must
be explicitly distinguished. This is a promising area for future research.
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4 Concurrency

Interactive systems process multiple inputs and generate multiple outputs simulta-
neously, and are therefore inherently concurrent. However, the dominant concur-
rency paradigm today – sequential threads sharing mutable state – is the source of
much of the inessential complexity in modern software systems. One of the main
problems is the widespread use of non-determinism in the service of essentially de-
terministic ends [26][9]. This is more of a concern than ever because current trends
in microprocessor design suggest that the next major advances in hardware perfor-
mance will come from increasingly parallel architectures – “multicore” or chip mul-
tiprocessors (CMPs) [12]. We face a difficult challenge: translating this increased
CPU bandwidth into practical performance, whilst simultaneously making interac-
tive systems less complex. This will only be feasible if we can make languages more
inherently concurrent, shifting the complexity burden from application developers
to language implementors.

To achieve this our computational model needs to distinguish, and support, two
kinds of concurrency 3 :

(i) Deterministic or declarative concurrency [36] which has no observable non-
determinism and preserves referential transparency.

(ii) Non-deterministic concurrency, which involves the deliberate and controlled
mutation of shared state, and which is semantically visible, in the form of
non-determinism.

Both kinds of concurrency are critical to the delivery of robust, concurrent interac-
tive systems. Modality once again offers a unifying conceptual framework.

The simplest kind of declarative concurrency is that offered by the standard
producer-consumer style dataflow model described in §2. The model allows the
execution of the code which consumes the list to be interleaved with the execution
of the code which computes the tail of the list. Whereas a typical implementation
today would probably involve explicitly synchronised threads accessing a shared
mutable list, the synchronisation is implicit in the declarative model, and the “mu-
tability” of the list is nothing more than the visibility of intermediate states. Data
dependencies ensure a deterministic outcome regardless of how the computation is
initiated.

Declarative concurrency is not restricted to a single producer or single consumer.
Graphical user interfaces for example in effect display multiple output streams si-
multaneously, each driven by an independent demand [22]. Such systems can be
understood as the parallel composition of a number of (perhaps similar) declara-
tive computations. Each concurrent computation conceptually induces a distinct
demand chain. When these computations overlap, such as when the computation
of the colour of one pixel overlaps the corresponding computation for an adjacent
pixel, the composite process executes incrementally, albeit in a concurrent rather
than serial sense. Once again data dependencies ensure a deterministic outcome. 4

3 The distinction is roughly the one drawn by Peyton Jones et al. between implicit and explicit concurrency
[23].
4 This generalised dataflow model is closely related to so-called intensional programming languages like
Indexical Lucid and Multidimensional Lucid [34], which also have a “possible worlds” semantics and a
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Non-deterministic concurrency is of a quite different character, involving the
mutation of shared state by concurrent interactions. Specifically, non-determinism
arises from the need to merge concurrent interaction streams. Recall that in the
proposed model, a stateful or “reactive” process is a mutable slot storing an index
into the space of possible declarative computations. The value of the index indicates
the current state of the process. Such processes can be thought of as versions or
views of particular interactive systems which are deemed “authoritative” from the
vantage point of some external agent.

To interact with a stateful process is to navigate through the space of declarative
computations and select a new one as its current state. When multiple interaction
streams arrive simultaneously at the same reactive process, these concurrent streams
in effect represent alternative “future histories” of the reactive process: hypothetical
ways in which its state might subsequently evolve. Merging these alternate timelines
into a single authoritative history sometimes requires a mechanism for arbitrarily
interleaving them. This process of arbitration is the only respect in which non-
determinism features in the declarative interaction model.

Sometimes there are consistency constraints on the allowable states of a reac-
tive process which restrict the ways in which concurrent interaction streams can
non-deterministically interleave. In particular, certain interaction sequences may
only be applied atomically. This is the familiar notion of a transaction. A con-
tribution of declarative interaction is that the execution model naturally supports
transactions. Transactional concurrency [35] is already simpler than traditional
lock-based approaches to concurrency, avoiding a number of problems usually asso-
ciated with locks, such as non-compositionality and the possibility of deadlock and
priority inversion [20]. But modality offers an even simpler conceptual framework
for transactions than the standard one, as well as a potentially more efficient im-
plementation. Transactional memory standardly employs a so-called “optimistic”
synchronisation policy. Rather than acquiring a lock, a transaction accumulates a
local log of its state reads and writes. When the transaction completes, its log is
validated, which involves checking that any state which was read by the transaction
has not been modified in the interim by another transaction. The transaction is only
committed if validation succeeds; otherwise it is re-executed ab initio, generating a
new transaction log.

Because the ontology of possible worlds already supports multiple branching
histories, there is no need to generate transaction logs or verify transactions in
the proposed model. Instead one simply selects the right version or state of the
interactive process – the one in which the desired sequence of events took place.
“Committing” or applying a particular transaction is implicit in the act of navigat-
ing to the intended version.

Figure 1 below shows the basic idea. Suppose there are three agents X, Y and Z

interacting concurrently with a system O. O is in fact just another agent whose view
of the world is considered authoritative. wX , wY , wZ and wO represents “the world
according to” X, Y and Z and O respectively: that particular agent’s view of the
state of the shared system. O’s job is to arbitrate between X, Y and Z when they are

demand-driven execution model based on concurrent dataflow.
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all trying to make changes to the authoritative view of the system at the same time.
In (a) we see X and Z simultaneously making changes to their “working branches”
of the system. In (b), O accepts X’s latest change whilst Z continues to work on an
earlier version. In (c), agent X has relinquished its view of the system, representing
perhaps a user going offline. We also see Y starting to modify its own working
branch, but its changes not yet having been accepted by O. Then in (d), Z’s two
outstanding changes are accepted, leaving Z with an up-to-date view of the system.
And finally in (e), we see Y ’s change being incorporated into the trunk, leaving Y

with an up-to-date view, but Z remaining out-of-date. We can see worldlines in
which X’s original change, or Z’s two changes, are all that ever happens: these are
simply possible states of the system which are no longer interesting to any of the
agents, although strictly speaking they still “exist”. The challenge for implementors
is to devise efficient strategies for speculatively generating alternative hypothetical
future histories of the system, preferring timelines that are most likely to result
from actual interactions, and strategies for uncaching those deemed unlikely to be
revisited. But this notwithstanding, the potential simplicity gain is significant, as
there is no principled distinction between the views of the system held by X, Y , Z

and O.
The potential efficiency gain comes from incrementality. Although each version

or state has the advantage of being a purely declarative computation which executes
in semantic isolation from the others, when some sub-sequence of one of the com-
peting timelines is “committed” (selected as the authoritative version of events), it
does not generally invalidate the other pending transactions, although they now ap-
ply to an obsolete version of the system. They need only be incrementally adjusted
to reflect the version of the system to which they are eventually applied, rather than
re-executed ab initio. This has the potential to side-step the “retry thrashing” issue
that can sometimes arise with transactional memory.

So under the proposed model, the essence of reactive computation is this higher-
order activity of merging the alternate timelines implied by concurrent interaction
streams into consistent authoritative histories. Since declarative computation is
isolated from reactive computation through staging, as we saw in §2, the semantics
of the language can be partitioned into deterministic and non-deterministic com-
ponents, and the separation enforced through a suitable type system. 5 Such a
stratified approach has been taken in languages like Concurrent Haskell [23] and
O’Haskell [31], albeit with monadic, rather than modal, type systems enforcing the
encapsulation.

5 Persistence

Transactions are more than just about safely co-ordinating changes to shared state:
they are also about managing the granularity of those changes. The significance
of this should become clear if we consider what Cardelli has called wide-area com-
puting [7], interactive computation on wide-area networks. In a truly “connected”
world, any computation is potentially wide-area, as software can be connected to

5 In the distributed computing literature, this is sometimes described as the separation of computation
from co-ordination.
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(a) (b)

(c) (d)

(e)

Fig. 1. “Possible worlds” view of transactional concurrency
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other systems located anywhere in the global network. Wide-area computing is
distinguished by the unbounded latency problem. Since there is no practical upper
bound to communication delays, a client system cannot in general distinguish a long
delay from a network failure or indeed from voluntary disconnection.

Voluntary disconnection in particular is important because it also occurs in the
local-area network. Think of a query or view that is invalidated as soon as the user
makes a change to the system, and must be manually refreshed. Refreshing such a
view is like reconnecting, synchronising the state of the view, and then disconnecting
again. Such disconnected views are common in part because of the very problem
the declarative interaction model aims to address: the need to manually write the
glue code responsible for synchronisation. But there are in fact good reasons why
some views require coarse-grained synchronisation.

For a start there are usability considerations: often we want to look at a snapshot
rather than a continuously evolving view. But also recall that interactive systems are
(adopting Wegner’s terminology) open; external systems can observe and influence
their behaviour [37]. It is legitimate therefore to think of interactive systems as
proper parts of larger systems, which may themselves be open or closed. 6 Not only
can single systems be arbitrarily large, but they can grow and shrink dynamically as
dependent computations – observers – are attached and detached. And since these
observers can be arbitrarily complex, it clearly must be possible to temporarily
disconnect observers and resynchronise them when required, rather than require
them to continuously update.

These concerns suggest that even in a local-area environment, flexible synchro-
nisation policies will be required long after we stop having to write the glue code
to do the actual synchronisation. Performance advances will not make this issue
go away either, since it seems safe to assume that as computers become more pow-
erful, we will simply invent more computationally demanding uses for them. Our
computational model for interactive systems therefore has to contend with a phe-
nomenon which is in fact rather general: arbitrarily long disconnection of interacting
subsystems, whether due to local factors such as a user-specified synchronisation
schedule, or global circumstances such as network outage or long latency. Whatever
the reasons for disconnection, the effect is the same.

Computation which can transparently recover from temporary disconnection
or failure is sometimes called persistent computation [5]. Information about the
evolution of the observed system that occurred while the client was disconnected
must not be lost, and when the client reconnects, it must automatically “catch up”
with the current state. Reconnecting must not force the client to recompute all its
state from scratch; it should only have to synchronise. The execution model must
therefore retain information about which versions of dependent systems were last
seen, so that synchronisation only has to incorporate what has happened since.

Together, these requirements suggest another role for transactions beyond con-
currency: managing the granularity of synchronisation of (potentially widely-
distributed) state. Let us understand the total first-order information content in

6 Interaction in this sense grows the scope of our computations to leave us inside them, as both passive
witnesses and active participants. The dual principle, again due to Wegner, is that all systems can be
understood as composed of interacting parts, or equivalently, that non-interactivity is not preserved under
the operation of taking subsystems.
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a system as exhausted by the states of all the reactive processes in the system;
specifically that there is no extra information (other than historical data) in the
interactions themselves. It follows that rather than processes receiving messages
from other processes, they may only observe state changes in them. The com-
munications between processes are deltas (transactional descriptions of changes) in
observed processes; to respond to such a communication is to synchronise (maintain
the consistency of) one’s interpretation of the state of the dependee process, incor-
porating the corresponding delta into one’s own state. Change propagates through
a large system of interacting processes in order to maintain the consistency of these
interpretations. 7 Partial termination is the state a reactive process is in whenever
it reflects the most recently observed states of the processes it is connected to.

Crucially, clients are unable to distinguish disconnection from an observed sys-
tem, from the observed system deciding to batch up changes before publishing them.
In fact the synchronisation policy can lie anywhere on the continuum between fully
incremental and full batch-mode. The upshot is that transactions serve not only
as a concurrency mechanism, but also as a mechanism for tolerating unbounded
disconnection times by allowing micro-changes to batch up into larger deltas. How
this approach relates to other asynchronous interaction models suited to distributed
computing is an important topic for future study. In allowing only declarative inter-
process communication, and containing state within processes, for example, it may
bear some relation to the join calculus [17], in which concurrent processes can only
interact via declarative pattern-matching.

The Holy Grail here is arguably scale invariance: a single execution model
which serves the needs of small-scale, local-area interactive systems as well as it
does those of large-scale, wide-area interactive systems. Locally, there will always
be some views too expensive to maintain incrementally, and which need to be syn-
chronised on an as-needed basis instead; globally, there will always be issues of
latency and intermittent connectivity which require essentially the same solution.
Scale invariance would allow us to add distribution and complexity to a system
without having to fundamentally change the underlying computational model. 8

6 Interactive programming languages

Declarative approaches to building interactive systems like graphical user interfaces
are not new; Haggis [16], Fudgets [8], Brisk [22], Clean [4] and Fruit [11] are but a
few examples of such efforts. I suggest that at least one further innovation will be
required before declarative languages are likely to be widely adopted: the develop-
ment of interactive programming languages. The best way to build an interactive
system is, after all, interactively – at least part of the time.

We shall rather informally understand an interactive programming language
(IPL) as follows. An IPL allows programmers to build interactive systems that

7 Since it construes inter-process communication as synchronisation of an interpretation, I have previously
called this idea semantic computing [32]. When the synchronisation policy is batch-mode, synchronisation
behaves like a compiler, translating batches of source changes into batches of target changes. When the
synchronisation policy is incremental, synchronisation behaves like an interpreter, incrementally applying
changes to the target as the source changes. The notion of state is algebraic; a state is just the least batch
of changes required to build it from the null structure.
8 The current interest in using transactions to handle concurrency at all scales is a move in this direction.
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conform to the declarative interaction model – that is to say systems which have a
modal notion of state, that separate stateful reactive computation from a declarative
core language, and that are incremental, concurrent, transactional and persistent –
in an “immediate” or direct way which is qualitatively different both from the batch-
style edit-compile-execute cycle and from the read-eval-print loop of traditional
interactive programming environments such as Lisp. An IPL is neither compiled nor
interpreted in the traditional sense: it is itself an interactive system that conforms to
the declarative interaction model, although it may not have been built using it. The
“state” at any point in time of an implementation of an IPL is a partially terminated
program in the declarative core language: “programming” is just interacting with
its state. Its initial state is just the null program; the user can edit this into any
program in the space of possible programs in the declarative core language.

IPLs thus conflate the standard distinctions between programming, and inter-
action at large; between compile-time, and run-time; between editing code, and
editing data; and between languages, and applications. In principle at least, every
application built using an IPL exposes the full power of the IPL; and conversely
every IPL implementation is manifested concretely as a running application.

It appears that the notion of an IPL is largely independent of the choice of
the declarative core language. An early experiment [32] showed how the untyped
lambda calculus can be made interactive; a more recent investigation (unpublished)
suggests that object-oriented languages can be treated similarly. Interactive logic
and relational programming languages are presumably feasible. 9

As presented, the declarative interaction model is little more than a prelimi-
nary sketch. Several concretisation steps will be required before its practical utility
can be evaluated. One such step will be the implementation of a general-purpose
IPL suitable for local-area as well as wide-area interactive computing. In reversing
the usual situation in which declarative programs are regarded as guests within a
primarily procedural environment, such languages should offer significant simplic-
ity and robustness benefits. Moreover, because their programming model reflects
how interactive systems behave, rather than how they have historically been im-
plemented, the impedance mismatch between languages and applications should be
greatly reduced.
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